Inverter Pair
Wall Mounted Type H-Series

[Applied Models]
● Inverter Pair : Heat Pump
Inverter Pair
Wall Mounted Type
H-Series

Heat Pump

Indoor Units
FTXG09HVJU
FTXG12HVJU
FTXG15HVJU

Outdoor Units
RXG09HVJU
RXG12HVJU
RXG15HVJU

1. SAFETY CONSIDERATIONS..vi

Part 1
List of Functions ..1
1. Functions..2

Part 2
Specifications ...3
1. Specifications...4

Part 3
Printed Circuit Board
Connector Wiring Diagram ...7
1. Printed Circuit Board Connector Wiring Diagram..8
1.1 Indoor Unit...8
1.2 Outdoor Unit...10
Part 4

Function and Control... 11

1. Description of Operation ... 12
 1.1 Indoor Unit .. 12
 1.2 Outdoor Unit ... 13

2. Main Functions... 14
 2.1 QUATERNITY Drying Operation .. 14
 2.2 Comfort Sleep Operation ... 16
 2.3 Automatic Operation ... 18
 2.4 Comfort Airflow Mode ... 19
 2.5 Cooling Breeze Operation ... 20
 2.6 Power-airflow Dual FlapsFins ... 21
 2.7 Wide-angle LouversFins ... 21
 2.8 3-D Airflow .. 22
 2.9 POWERFUL Operation ... 23
 2.10 Indoor Unit Quiet Operation .. 23
 2.11 Multi-colored Indicator Lamp ... 24
 2.12 Monitor Brightness Setting ... 24
 2.13 Information Display ... 25
 2.14 Mold-Proof Stick .. 26
 2.15 FLASH STREAMER AIR PURIFYING Operation 27
 2.16 Wipe-clean Flat Panel ... 29
 2.17 Filter Cleaning Indicator (Remote Controller) 30
 2.18 TIMER Operation ... 30
 2.19 Night Set Mode .. 31
 2.20 Table for Special Modes ... 32
 2.21 Thermostat Control ... 33
 2.22 Fan Speed Control for Indoor Units .. 34
 2.23 Draft Prevention (Hot-Start) .. 36

3. Control Specification .. 37
 3.1 Frequency Control ... 37
 3.2 Preheating Operation (Quick Warming Function) 38
 3.3 Four Way Valve Operation .. 38
 3.4 Compressor Start-up Protection ... 39
 3.5 Fan Speed Control for Outdoor Unit .. 40
 3.6 Fin Thermistor Control ... 41
 3.7 Input Current Control .. 41
 3.8 Peak-cut Control .. 42
 3.9 Indoor Heat Exchanger Freeze-up Protection 43
 3.10 Dew Prevention .. 44
 3.11 Liquid Compression Protection 2 ... 45
 3.12 Discharge Pipe Temperature Control 45
 3.13 Automatic Defrosting ... 46
 3.14 Electronic Expansion Valve Control .. 47
Part 5

System Configuration...53

1. Installation Manual ..54
 1.1 Indoor Units ...54
 1.2 Outdoor Units ..64
2. System Configuration ...70
3. Instruction..71
 3.1 Remote Controller ...71
 3.2 Cooling · QUATERNITY DRYING Operation73
 3.3 Heating Operation ..74
 3.4 AUTO Operation ..75
 3.5 FLASH STREAMER AIR PURIFYING · POWERFUL Operation76
 3.6 Adjusting Airflow Direction · Airflow Rate77
 3.7 COMFORT AIRFLOW · COOLING BREEZE Operation78
 3.8 TIMER Operation ..79
 3.9 COMFORT SLEEP Operation ..80
 3.10 Set Up · CHILD PROOF LOCK ...81
 3.11 INFORMATION DISPLAY ..82

Part 6

Service Diagnosis..83

1. Convenient Service Check Function ..85
2. Troubleshooting ..87
 2.1 Error Code Indication by Remote Controller87
 2.2 Air conditioner does not run ...88
 2.3 Air conditioner runs but does not cool or heat91
 2.4 When operation starts, safety breaker trips93
 2.5 Air conditioner makes a loud sound and vibrates95
 2.6 Indoor Unit PCB Abnormality ...96
 2.7 Peak-cut Control or Freeze-up Protection97
 2.8 Fan Motor System (DC Motor) Abnormality99
 2.9 Streamer Unit Abnormality ..101
 2.10 Thermistor System Abnormality ..103
 2.11 Front Panel Open / Close Abnormality104
 2.12 Humidity Sensor Abnormality ..105
 2.13 Signal Transmission Error (Indoor Unit - Outdoor Unit)106
 2.14 Incompatible Power Supply between Indoor Unit and Outdoor Unit ...108
 2.15 Outdoor Unit PCB Abnormality ..109
 2.16 OL Activation (Compressor Overload)110
 2.17 Compressor Lock ...111
 2.18 DC Fan Lock ..112
 2.19 Input Overcurrent Detection ..113
 2.20 Four-Way Valve Abnormality ...115
 2.21 Discharge Pipe Temperature Control117
 2.22 High Pressure Control in Cooling ..118
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.23 Compressor Sensor System Abnormality</td>
<td>120</td>
</tr>
<tr>
<td>2.24 Position Sensor Abnormality</td>
<td>121</td>
</tr>
<tr>
<td>2.25 DC Voltage / DC Current Sensor Abnormality</td>
<td>123</td>
</tr>
<tr>
<td>2.26 Thermistor System Abnormality</td>
<td>124</td>
</tr>
<tr>
<td>2.27 Abnormal Temperature in Electrical Box</td>
<td>126</td>
</tr>
<tr>
<td>2.28 Temperature Rise in Radiation Fin</td>
<td>128</td>
</tr>
<tr>
<td>2.29 Output Overcurrent</td>
<td>130</td>
</tr>
<tr>
<td>2.30 Insufficient Gas</td>
<td>132</td>
</tr>
<tr>
<td>2.31 Over Voltage Protection / Low Voltage Protection</td>
<td>134</td>
</tr>
<tr>
<td>2.32 Outdoor Unit PCB Abnormality or Communication Circuit Abnormality</td>
<td>135</td>
</tr>
<tr>
<td>2.33 Signal Transmission Error on Outdoor Unit PCB</td>
<td>138</td>
</tr>
<tr>
<td>2.34 Lights-out of Microcomputer Status Lamp</td>
<td>140</td>
</tr>
<tr>
<td>3. Check</td>
<td>141</td>
</tr>
<tr>
<td>3.1 Thermistor Resistance Check</td>
<td>141</td>
</tr>
<tr>
<td>3.2 Installation Condition Check</td>
<td>142</td>
</tr>
<tr>
<td>3.3 Outdoor Fan System Check (DC Motor)</td>
<td>142</td>
</tr>
<tr>
<td>3.4 Power Supply Waveform Check</td>
<td>143</td>
</tr>
<tr>
<td>3.5 Main Circuit Electrolytic Capacitor Check</td>
<td>143</td>
</tr>
<tr>
<td>3.6 Refrigerant System Check</td>
<td>144</td>
</tr>
<tr>
<td>3.7 “Inverter Checker” Check</td>
<td>145</td>
</tr>
<tr>
<td>3.8 Power Transistor Check</td>
<td>146</td>
</tr>
<tr>
<td>3.9 Discharge Pressure Check</td>
<td>147</td>
</tr>
<tr>
<td>3.10 Electronic Expansion Valve Check</td>
<td>148</td>
</tr>
<tr>
<td>3.11 Indoor Unit PCB Output Check</td>
<td>149</td>
</tr>
<tr>
<td>3.12 Rotating Pulse Input on Outdoor Unit PCB Check</td>
<td>150</td>
</tr>
<tr>
<td>3.13 Humidity Sensor Check</td>
<td>151</td>
</tr>
<tr>
<td>3.14 Main Circuit Short Check</td>
<td>151</td>
</tr>
<tr>
<td>3.15 Four-Way Valve Performance Check</td>
<td>152</td>
</tr>
<tr>
<td>3.16 Solenoid Valve for Dehumidification Check</td>
<td>153</td>
</tr>
</tbody>
</table>

Part 7

Removal Procedure

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Indoor Unit</td>
<td>155</td>
</tr>
<tr>
<td>1.1 Removal of Air Filters / Front panel</td>
<td>156</td>
</tr>
<tr>
<td>1.2 Removal of Upper Panel</td>
<td>163</td>
</tr>
<tr>
<td>1.3 Removal of Front Grille</td>
<td>166</td>
</tr>
<tr>
<td>1.4 Removal of Assembly of Open/Close Mechanism</td>
<td>169</td>
</tr>
<tr>
<td>1.5 Removal of Assembly of Reduction Motor</td>
<td>171</td>
</tr>
<tr>
<td>1.6 Removal of Electrical Box</td>
<td>174</td>
</tr>
<tr>
<td>1.7 Removal of PCB</td>
<td>179</td>
</tr>
<tr>
<td>1.8 Removal of Dehumidifying Solenoid Valve Coil</td>
<td>185</td>
</tr>
<tr>
<td>1.9 Removal of Drain Hose</td>
<td>186</td>
</tr>
<tr>
<td>1.10 Removal of Swing Motor</td>
<td>188</td>
</tr>
<tr>
<td>1.11 Removal of Heat Exchanger</td>
<td>190</td>
</tr>
<tr>
<td>1.12 Removal of Propeller Fan / Fan Motor</td>
<td>193</td>
</tr>
<tr>
<td>1.13 Removal of Horizontal Blades / Vertical Blades</td>
<td>196</td>
</tr>
<tr>
<td>1.14 Removal of Streamer Unit</td>
<td>199</td>
</tr>
</tbody>
</table>
2. Outdoor Unit ... 203
 2.1 How to Check the Service Monitor (LED A) .. 203
 2.2 Removal of Propeller Fan / Fan Motor .. 205
 2.3 Removal of Electrical Box ... 210
 2.4 Removal of PCB .. 214
 2.5 Removal of Sound Blanket ... 218
 2.6 Removal of Thermistor Assembly .. 220
 2.7 Removal of Reactor / Partition Plate ... 222
 2.8 Removal of Four Way Valve .. 224
 2.9 Removal of the Expansion Valve ... 226
 2.10 Removal of Compressor ... 228

Part 8

Others Additional Information ... 231
 1. Additional Information ... 232
 1.1 Trial Operation ... 232
 1.2 Field Setting ... 233
 1.3 Application of Silicon Grease to a Power Transistor and a Diode Bridge 234

Part 9

Appendix ... 235
 1. Piping Diagrams ... 236
 1.1 Indoor Units .. 236
 1.2 Outdoor Units ... 236
 2. Wiring Diagrams ... 237
 2.1 Indoor Units .. 237
 2.2 Outdoor Units ... 237

Index .. i
1. SAFETY CONSIDERATIONS

Read these SAFETY CONSIDERATIONS carefully before performing any repair work. Comply with these safety symbols without fail.

Meanings of DANGER, WARNING, CAUTION, and NOTE Symbols:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.</td>
</tr>
<tr>
<td>NOTE</td>
<td>Indicates situations that may result in equipment or property-damage only.</td>
</tr>
</tbody>
</table>

1.1 Safety Considerations for Repair

- **DANGER**
 - If refrigerant gas leaks during repair or service, ventilate the area immediately. Refrigerant gas may produce toxic gas if it comes into contact with flames. Refrigerant gas is heavier than air and replaces oxygen. In the event of an accident, a massive leak could lead to oxygen depletion, especially in basements, and an asphyxiation hazard could occur leading to serious injury or death.
 - Do not start or stop the air conditioner operation by plugging or unplugging the power cable plug if a plug is used. Plugging or unplugging the power cable plug to operate the equipment may cause an electrical shock or fire.
 - Use parts listed in the service parts list and appropriate tools to conduct repair work. The use of inappropriate parts or tools may cause an electrical shock or fire.
 - Disconnect power before disassembling the equipment for repairs. Working on the equipment that is connected to the power supply may cause an electric shock. If it is necessary to supply power to the equipment to conduct repairs or to inspect the circuits, do not touch any electrically charged sections of the equipment.
 - The step-up capacitor supplies high-voltage electricity to the electrical components of the outdoor unit. Discharge the capacitor completely before conducting repair work. A charged capacitor may cause an electrical shock.
 - If refrigerant gas is discharged during repair work, do not touch the discharged refrigerant gas. The refrigerant gas may cause frostbite.
 - Use only pipes, flare nuts, tools, and other materials designed specifically for R410A refrigerant systems. Never use tools or materials designed for R22 refrigerant systems on an R410A refrigerant system. Doing so can cause a serious accident or an equipment failure.
 - Check to see if the parts and wires are mounted and connected properly, and if the connections at the soldered or crimped terminals are secure. Improper installation and connections may cause excessive heat generation, fire, or electrical shock.
 - Prior to disconnecting the suction or discharge pipe from the compressor at the welded section, pump-down the refrigerant gas completely in a well-ventilated place first. If there is refrigerant gas or oil remaining inside the compressor, the refrigerant gas or oil can discharge when the pipe is being disconnected and it may cause an injury.
 - Wear a safety helmet, gloves, and a safety belt when working at an elevated height of more than 6.5 ft (2 m). Insufficient safety measures may cause a fall resulting in injury.
 - Do not mix air or gas other than the specified refrigerant R410A to the refrigerant system. If air enters the refrigerant systems, it can cause an excessive high pressure resulting in equipment damage and injury.
 - When relocating the equipment, check if the new installation site has sufficient strength to withstand the weight of the equipment. If the installation site does not have sufficient strength and the equipment is not properly secured, the equipment may fall and cause injury.
 - Securely fasten the outside unit terminal cover (panel). If the terminal cover/panel is not fastened properly, dust or water may enter the outside unit causing fire or electric shock.
 - When relocating the system, keep the refrigerant circuit free from substances other than the specified refrigerant (R-410A) such as air. Any presence of air or other foreign substance in the refrigerant circuit can cause an abnormal pressure rise or rupture, resulting in injury.
 - If refrigerant gas leaks, locate the leaking point and repair it before charging refrigerant. After charging refrigerant, check for refrigerant leaks. If the leaking point cannot be located and the repair work must be stopped, perform a pump-down and close the service valve to prevent the refrigerant gas from leaking.
leaking into the room. The refrigerant gas itself is harmless, but it may generate toxic gases if it comes into contact with flames.

--- CAUTION ---

- Do not repair the electrical components with wet hands. Working on the equipment with wet hands may cause an electrical shock.

- Do not clean the air conditioner by splashing water on it. Washing the unit with water may cause an electrical shock.

- Ground the unit when repairing equipment in a humid or wet place to avoid electrical shocks.

- Turn off the power when cleaning the equipment to prevent internal fans that rotate at high speed from starting suddenly as they can cause injury.

- Let the refrigerant lines cool down before performing any repair work. Working on the unit when the refrigerant lines are hot may cause burns.

- All welding and cutting operations must be done in a well-ventilated place to prevent the accumulation of toxic fumes or possibly oxygen deficiency to occur.

- Check the grounding and repair it if the equipment is not properly grounded. Improper grounding may cause an electrical shock.

- Measure the insulation resistance after the repair. The resistance must be 1M Ω or higher. Faulty insulation may cause an electrical shock.

--- NOTE ---

- Check the drainage of the indoor unit after finishing repair work. Faulty drainage may cause water to enter the room resulting in wet floors and furniture.

- Do not tilt the unit when removing it. The water inside the unit may spill resulting in wet floors and furniture.

- Dismantling of the unit, disposal of the refrigerant, oil, and additional parts, should be done in accordance with the relevant local, state, and national regulations.

1.2 Safety Considerations for Users

--- DANGER ---

- Never attempt to modify the equipment. Doing so can cause electrical shock, excessive heat generation, or fire.

- If the power cable and lead wires have scratches or have become deteriorated, have them replaced. Damaged cable and wires may cause an electrical shock or fire.

- Do not use a joined power cable or an extension cord, or share the same power outlet with other electrical appliances as it may cause an electrical shock or fire.

- Use an exclusive power circuit for the equipment. Insufficient circuit amperage capacity may cause an electrical shock or fire.

--- WARNING ---

- Do not damage or modify the power cable. Damaged or modified power cables may cause an electrical shock or fire. Placing heavy items on the power cable or pulling the power cable may damage the cable.

- Check the unit foundation for damage on a continual basis, especially if it has been in use for a long time. If left in a damaged condition, the unit may fall and cause injury. If the installation platform or frame has corroded, have it replaced. A corroded platform or frame may cause the unit to fall resulting in injury.

- If the unit has a power cable plug and it is dirty, clean the plug before securely inserting it into a power outlet. If the plug has a loose connection, tighten it or it may cause electrical shock or fire.

--- CAUTION ---

- After replacing the battery in the remote controller, dispose of the old battery to prevent children from swallowing it. If a child swallows the battery, see a doctor immediately.

- Never remove the fan guard of the unit. A fan rotating at high speed without the fan guard is very dangerous.

- Before cleaning the unit, stop the operation of the unit by turning the power off or by pulling the power cable plug out from its receptacle. Otherwise an electrical shock or injury may result.

- Do not wipe the controller operation panel with benzene, thinner, chemical dust cloth, etc. The panel may get discolored or the coating can peel off. If it is extremely dirty, soak a cloth in a water-diluted neutral detergent, squeeze it well, and wipe the panel clean. Then wipe it with another dry cloth.
Part 1
List of Functions

1. Functions .. 2
1. Functions

<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
<th>FTGX09/12/15HVJU</th>
<th>Category</th>
<th>Functions</th>
<th>RXG09/12/15HVJU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Function</td>
<td>Inverter (with Inverter Power Control)</td>
<td>〇</td>
<td>Health & Clean</td>
<td>Air-Purifying Filter</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Operation Limit for Cooling (*FDB)</td>
<td>14~109</td>
<td></td>
<td>Photocatalytic Deodorizing Filter</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Operation Limit for Heating (*FWB)</td>
<td>—4~75</td>
<td></td>
<td>Air-Purifying Filter with Photocatalytic Deodorizing Function</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>PAM Control</td>
<td>—</td>
<td></td>
<td>Titanium Apatite Photocatalytic Air-Purifying Filter</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Energy Saving During Operation Standby</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Compressor</td>
<td>Oval Scroll Compressor</td>
<td>—</td>
<td></td>
<td>Deodorizing Filter for Streamer</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Swing Compressor</td>
<td>—</td>
<td></td>
<td>Flash Streamer Air-Purifying</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Rotary Compressor</td>
<td>—</td>
<td></td>
<td>Air Filter (Prefilter)</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Reluctance DC Motor</td>
<td>—</td>
<td></td>
<td>Wipe-clean Flat Panel</td>
<td>〇</td>
</tr>
<tr>
<td>Comfortable Airflow</td>
<td>Power-Airflow Flap</td>
<td>—</td>
<td></td>
<td>Washable Upper Grille</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Power-Airflow Dual Flaps</td>
<td>〇</td>
<td></td>
<td>Filter Cleaning Indicator (Remote Controller)</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Wide-Angle Louvers</td>
<td>〇</td>
<td></td>
<td>Mold Proof Operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Vertical Auto-Swing (Up and Down)</td>
<td>〇</td>
<td></td>
<td>Mold Shock Operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Horizontal Auto-Swing (Right and Left)</td>
<td>—</td>
<td></td>
<td>Mold-Proof Stick</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>3-D Airflow</td>
<td>—</td>
<td></td>
<td>Comfort Sleep Operation</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Comfort Airflow Mode</td>
<td>—</td>
<td></td>
<td>Fresh Air Supply Ventilation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>COOLING BREEZE Operation</td>
<td>—</td>
<td></td>
<td>Home Leave Ventilation</td>
<td>—</td>
</tr>
<tr>
<td>Comfort Control</td>
<td>Auto Fan Speed</td>
<td>—</td>
<td>Timer</td>
<td>Weekly Timer</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Indoor Unit Quiet Operation</td>
<td>—</td>
<td></td>
<td>24-Hour ON/OFF Timer</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Night Quiet Mode (Automatic)</td>
<td>—</td>
<td></td>
<td>Count Up-down ON/OFF Timer</td>
<td>Off Only</td>
</tr>
<tr>
<td></td>
<td>Outdoor Unit Quiet Operation</td>
<td>—</td>
<td></td>
<td>Night Set Mode</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>INTELLIGENT EYE</td>
<td>—</td>
<td>Worry Free</td>
<td>Auto-Restart (after Power Failure)</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>2-Area INTELLIGENT EYE</td>
<td>—</td>
<td>“Reliability & Durability”</td>
<td>Self-Diagnosis (Remote Controller) Display</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Quick Warming Function</td>
<td>—</td>
<td></td>
<td>Wiring Error Check</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Hot-Start Function</td>
<td>〇</td>
<td></td>
<td>Anticorrosion Treatment of Outdoor Heat Exchanger</td>
<td>〇</td>
</tr>
<tr>
<td>Operation</td>
<td>Automatic Defrosting</td>
<td>〇</td>
<td></td>
<td>Multi-Split / Split Compatible Indoor Unit</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Automatic Operation</td>
<td>—</td>
<td></td>
<td>R/P, C/O Compatible Indoor Unit</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>QUATERNITY Drying Operation</td>
<td>—</td>
<td></td>
<td>Chargeless</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>DRY COOLING Operation</td>
<td>〇</td>
<td></td>
<td>Either Side Drain (Right or Left)</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Program Dry Function</td>
<td>—</td>
<td></td>
<td>Power Selection</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Fan Only</td>
<td>—</td>
<td></td>
<td>Low Temperature Cooling Operation (-15°C (5°F))</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Air-Purifying Operation</td>
<td>〇</td>
<td></td>
<td>°C/F changeover R/C temperature display (factory setting : °F)</td>
<td>〇</td>
</tr>
<tr>
<td>Lifestyle Convenience</td>
<td>New POWERFUL Operation (Non-Inverter)</td>
<td>〇</td>
<td>Remote Control</td>
<td>5-Rooms Centralized Controller (Option)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Inverter POWERFUL Operation</td>
<td>〇</td>
<td></td>
<td>Remote Control Adaptor (Normal Open-Pulse Contact) (Option)</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Dry Keep</td>
<td>—</td>
<td></td>
<td>Remote Control Adaptor (Normal Open Contact)</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Priority-Room Setting</td>
<td>—</td>
<td></td>
<td>DIII-NET Compatible (Adaptor) (Option)</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Cooling / Heating Mode Lock</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>HOME LEAVE Operation</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>ECONO Mode</td>
<td>—</td>
<td>Remote Controller</td>
<td>Wireless</td>
<td>〇</td>
</tr>
<tr>
<td></td>
<td>Indoor Unit ON/OFF Switch</td>
<td>—</td>
<td></td>
<td>Wired</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Signal Reception Indicator</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Multi-colored Indicator</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Monitor Brightness Setting</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Temperature & Humidity Level Information Display (Remote Controller)</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Childproof Lock</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>R/C with Back Light</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: 〇: Included Functions
— : No Functions

(●1) Inverter POWERFUL operation can be used for COOLING, DRY COOLING, and HEATING.
(●2) The function setting is cancelled as it is restarted automatically.
(●3) Temperature display -9°C~37°C(16~99°F)
Part 2
Specifications

1. Specifications ..4
1. Specifications

60Hz 230V

Capacity
- **Rated (Min.–Max.):**
 - Indoor: 9,000 (5,300~12,300) Btu/h
 - Outdoor: 780 (220~1,900) Btu/h

Moisture Removal
- **Rated (Min.–Max.):**
 - Indoor: 3.3 Pt/h
 - Outdoor: —

Power Consumption
- **Rated (Min.–Max.):**
 - Indoor: 3.10 A (250~900 W)
 - Outdoor: 2.98 A (22-3/8 x31-5/16 x11-1/4"

Power Factor
- **Rated:**
 - Indoor: 80.0%
 - Outdoor: 79.7%

EER
- **Rated:**
 - Indoor: 15.8 Btu/h·W
 - Outdoor: 22-3/8 x31-5/16 x11-1/4"

COP
- **Rated:**
 - Indoor: 5.64
 - Outdoor: 4.5

Energy Efficiency
- **SEER/HSPF:**
 - Indoor: 26.1
 - Outdoor: 22.7

Piping Connections
- **Liquid (mm):**
 - Indoor: 1/4"
 - Outdoor: 3/8"

Heat Insulation
- **Both Liquid and Gas Pipes:**
 - Indoor: 42 /
 - Outdoor: 46 /

Dimensions
- **Indoor:** 12 x 35-1/16 x 8-1/4"
 - Weight: 31 lbs (14 kg)
 - Gross Weight: 38 lbs (17 kg)

Outdoor Equipment
- **Casing Color:**
 - Indoor: Ivory White
 - Outdoor: Ivory White

Compressor
- **Model:**
 - Indoor: 2YC36CXD
 - Outdoor: 2YC36CXD

Refrigerant Oil
- **Type:**
 - Indoor: FVC50K
 - Outdoor: FVC50K

Refrigerant
- **Type:**
 - Indoor: R-410A
 - Outdoor: R-410A

Operation Sound
- **Indoor:**
 - H 46 dBA
 - L 46 dBA
 - M 33 dBA

Drawing No.
- 3D062857

Note:
- The data are based on the conditions shown in the table below.

Conversion Formulas
- \(\text{kcal/h} = \text{kW} \times 860 \)
- \(\text{Btu/h} = \text{kW} \times 3414 \)
- \(\text{cfm} = \text{m³/min} \times 35.3 \)

Specifications

<table>
<thead>
<tr>
<th>Specifications SiUS04-921</th>
<th>Specifications SiUS04-921</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Specifications</td>
<td>60Hz 230V</td>
</tr>
<tr>
<td>1. Specifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor Units</td>
<td></td>
</tr>
<tr>
<td>FTXG09HVJU</td>
<td>FTXG12HVJU</td>
</tr>
<tr>
<td>Outdoor Units</td>
<td></td>
</tr>
<tr>
<td>RXG09HVJU</td>
<td>RXG12HVJU</td>
</tr>
<tr>
<td>Capacity</td>
<td></td>
</tr>
<tr>
<td>Rated (Min.–Max.)</td>
<td></td>
</tr>
<tr>
<td>Indoor:</td>
<td>9,000 (5,300~12,300) Btu/h</td>
</tr>
<tr>
<td>Outdoor:</td>
<td>780 (220~1,900) Btu/h</td>
</tr>
<tr>
<td>Moisture Removal</td>
<td></td>
</tr>
<tr>
<td>Rated (Min.–Max.)</td>
<td></td>
</tr>
<tr>
<td>Indoor:</td>
<td>3.3 Pt/h</td>
</tr>
<tr>
<td>Outdoor:</td>
<td>—</td>
</tr>
<tr>
<td>Power Consumption</td>
<td></td>
</tr>
<tr>
<td>Rated (Min.–Max.)</td>
<td></td>
</tr>
<tr>
<td>Indoor:</td>
<td>570 (250~900) W</td>
</tr>
<tr>
<td>Outdoor:</td>
<td>546 (250~900) W</td>
</tr>
<tr>
<td>Power Factor</td>
<td></td>
</tr>
<tr>
<td>Rated:</td>
<td>80.0%</td>
</tr>
<tr>
<td>EER</td>
<td>15.8 Btu/h·W</td>
</tr>
<tr>
<td>COP</td>
<td>5.64</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td></td>
</tr>
<tr>
<td>SEER/HSPF</td>
<td>26.1</td>
</tr>
<tr>
<td>Piping Connections</td>
<td></td>
</tr>
<tr>
<td>Liquid (mm):</td>
<td>1/4"</td>
</tr>
<tr>
<td>Gas (mm):</td>
<td>63/8"</td>
</tr>
<tr>
<td>Drain (mm):</td>
<td>11/16"</td>
</tr>
<tr>
<td>Heat Insulation</td>
<td>Both Liquid and Gas Pipes</td>
</tr>
<tr>
<td>Indoor:</td>
<td></td>
</tr>
<tr>
<td>Outdoor:</td>
<td></td>
</tr>
<tr>
<td>Max. Interunit Piping Length</td>
<td>32 ft (9.8 m)</td>
</tr>
<tr>
<td>Max. Interunit Height Difference</td>
<td>26 ft (8 m)</td>
</tr>
<tr>
<td>Chargless</td>
<td>—</td>
</tr>
<tr>
<td>Amount of Additional Charge of Refrigerant oz/ft</td>
<td>—</td>
</tr>
<tr>
<td>Indoor Units</td>
<td></td>
</tr>
<tr>
<td>FTXG09HVJU</td>
<td></td>
</tr>
<tr>
<td>FTXG12HVJU</td>
<td></td>
</tr>
<tr>
<td>Front Panel Color</td>
<td>White</td>
</tr>
<tr>
<td>Airflow Rate cfm (m³/min):</td>
<td>H 420 (11.9)</td>
</tr>
<tr>
<td>Fan Type</td>
<td>Cross Flow Fan</td>
</tr>
<tr>
<td>Motor Output W:</td>
<td>325 (9.2)</td>
</tr>
<tr>
<td>Speed Steps:</td>
<td>230 (6.5)</td>
</tr>
<tr>
<td>Air Direction Control</td>
<td>Right, Left, Horizontal and Downward</td>
</tr>
<tr>
<td>Air Filter</td>
<td>Removable / Washable / Mildew Proof</td>
</tr>
<tr>
<td>Running Current (Rated):</td>
<td>0.12 A</td>
</tr>
<tr>
<td>Power Consumption (Rated):</td>
<td>24 W</td>
</tr>
<tr>
<td>Power Factor:</td>
<td>87%</td>
</tr>
<tr>
<td>Temperature Control</td>
<td>Microcomputer Control</td>
</tr>
<tr>
<td>Dimensions (H×W×D):</td>
<td>12 x 35-1/16 x 8-1/4"</td>
</tr>
<tr>
<td>Packaged Dimensions (H×W×D):</td>
<td>11 x 37-5/8 x 14-7/8"</td>
</tr>
<tr>
<td>Weight:</td>
<td>31 lbs (14 kg)</td>
</tr>
<tr>
<td>Gross Weight Lbs (kg):</td>
<td>38 lbs (17 kg)</td>
</tr>
<tr>
<td>Operation Sound dBa:</td>
<td>42 / 33 / 26</td>
</tr>
<tr>
<td>Outdoor Units</td>
<td></td>
</tr>
<tr>
<td>RXG09HVJU</td>
<td></td>
</tr>
<tr>
<td>RXG12HVJU</td>
<td></td>
</tr>
<tr>
<td>Casing Color</td>
<td>Ivory White</td>
</tr>
<tr>
<td>Compressor Type</td>
<td>Hermetically Sealed Swing Type</td>
</tr>
<tr>
<td>Model:</td>
<td>2YC36CXD</td>
</tr>
<tr>
<td>Motor Output W:</td>
<td>1,100</td>
</tr>
<tr>
<td>Refrigerant Oil Type:</td>
<td>FVC50K</td>
</tr>
<tr>
<td>Refrigerant Type:</td>
<td>R-410A</td>
</tr>
<tr>
<td>Refrigerant Charge Lbs (kg):</td>
<td>3.1</td>
</tr>
<tr>
<td>Airflow Rate cfm (m³/min):</td>
<td>H 1,178 (33.4)</td>
</tr>
<tr>
<td>Fan Type</td>
<td>Propeller</td>
</tr>
<tr>
<td>Motor Output W:</td>
<td>60</td>
</tr>
<tr>
<td>Running Current (Rated):</td>
<td>2.98 A</td>
</tr>
<tr>
<td>Power Consumption (Rated):</td>
<td>546 W</td>
</tr>
<tr>
<td>Power Factor:</td>
<td>79.6%</td>
</tr>
<tr>
<td>Dimensions (H×W×D):</td>
<td>22-3/8 x31-5/16 x11-1/4"</td>
</tr>
<tr>
<td>Packaged Dimensions (H×W×D):</td>
<td>25-3/16 x36-7/16 x14-7/8"</td>
</tr>
<tr>
<td>Weight Lbs (kg):</td>
<td>99 lbs (45 kg)</td>
</tr>
<tr>
<td>Gross Weight Lbs (kg):</td>
<td>104 lbs (47 kg)</td>
</tr>
<tr>
<td>Operation Sound dBa:</td>
<td>46 / 46 / 46</td>
</tr>
<tr>
<td>Drawing No.</td>
<td>3D062857</td>
</tr>
</tbody>
</table>

Note:
- The data are based on the conditions shown in the table below.

<table>
<thead>
<tr>
<th>Specifications SiUS04-921</th>
<th>Specifications SiUS04-921</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Hz 230V</td>
<td></td>
</tr>
<tr>
<td>Indoor Units</td>
<td></td>
</tr>
<tr>
<td>FTXG09HVJU</td>
<td>FTXG12HVJU</td>
</tr>
<tr>
<td>Outdoor Units</td>
<td></td>
</tr>
<tr>
<td>RXG09HVJU</td>
<td>RXG12HVJU</td>
</tr>
<tr>
<td>Cooling Heating Piping Length</td>
<td>25 ft (7.5 m)</td>
</tr>
</tbody>
</table>

Conversion Formulas
- \(\text{kcal/h} = \text{kW} \times 860 \)
- \(\text{Btu/h} = \text{kW} \times 3414 \)
- \(\text{cfm} = \text{m³/min} \times 35.3 \)
Specifications

60Hz 230V

<table>
<thead>
<tr>
<th>Model</th>
<th>Indoor Units</th>
<th>Outdoor Units</th>
<th>FTXG15HVJU</th>
<th>RXG15HVJU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling</td>
<td>Heating</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td>Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rated (Min.-Max.) Btu/h</td>
<td>15,000 (5,300~18,000)</td>
<td>18,000 (4,400~21,200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moisture Removal Pt/h</td>
<td>4.8</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Running Current (Rated) A</td>
<td>5.64</td>
<td>6.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Consumption Rated (Min.-Max.) W</td>
<td>1,160 (260~1,930)</td>
<td>1,320 (230~2,120)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Factor</td>
<td>89.0</td>
<td>99.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EER (Rated) Btu/h/W</td>
<td>12.9</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COP (Rated) W/W</td>
<td>3.8</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy Efficiency</td>
<td>SEER/HSPF</td>
<td>21.0</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Piping Connections</td>
<td>Liquid inch (mm)</td>
<td>41/4" (6.4 mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas inch (mm)</td>
<td>43/8" (9.5 mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drain inch (mm)</td>
<td>± 11/16" (17.5 mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat Insulation</td>
<td>Both Liquid and Gas Pipes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. Interunit Piping Length feet (m)</td>
<td>32 ft (10 m)</td>
<td>26 ft (8 m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. Interunit Height Difference feet (m)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chargeless</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amount of Additional Charge of Refrigerant oz/ft</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Indoor Unit</td>
<td>FTXG15HVJU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Front Panel Color</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Airflow Rate cfm (m³/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>487 (13.8)</td>
<td>494 (14.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>371 (10.5)</td>
<td>392 (11.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>258 (7.3)</td>
<td>293 (8.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fan Type</td>
<td>Cross Flow Fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motor Output W</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speed Steps</td>
<td>5 Steps, Quiet, Auto</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air Direction Control</td>
<td>Right, Left, Horizontal, Downward</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air Filter</td>
<td>Removable / Washable / Mildew Proof</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Running Current (Rated) A</td>
<td>0.15</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Consumption (Rated) W</td>
<td>33</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Factor</td>
<td>95.7</td>
<td>95.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature Control</td>
<td>Microcomputer Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensions (H×W×D) inch (mm)</td>
<td>12 x 35-1/16 x 8-1/4" (305 x 891 x 210 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packaged Dimensions (H×W×D) inch (mm)</td>
<td>11 x 37-5/8 x 14-7/8" (279 x 956 x 378 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weight Lbs (kg)</td>
<td>31 lbs (14 kg)</td>
<td>38 lbs (17 kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross Weight Lbs (kg)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation Sound H/M/L dBA</td>
<td>45 / 37 / 29</td>
<td>44 / 38 / 31</td>
<td></td>
</tr>
<tr>
<td>Outdoor Unit</td>
<td>RXG15HVJU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casing Color</td>
<td>Ivory White</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compressor Type</td>
<td>Hermetically Sealed Swing Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motor Output W</td>
<td>1,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refrigerant Oil Model</td>
<td>2YC36CXD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charge oz</td>
<td>FVC50K</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refrigerant Model</td>
<td>13.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charge Lbs</td>
<td>R-410A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refrigerant</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Airflow Rate cfm (m³/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1,262 (35.7)</td>
<td>1,195 (33.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fan Type</td>
<td>Propeller</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motor Output W</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Running Current (Rated) A</td>
<td>5.49</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Consumption (Rated) W</td>
<td>1,127</td>
<td>1,285</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Factor</td>
<td>89.3</td>
<td>90.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensions (H×W×D) inch (mm)</td>
<td>22-3/8 x31-5/16 x11-1/4" (568 x 795 x 286 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packaged Dimensions (H×W×D) inch (mm)</td>
<td>25-3/16 x 36-7/16 x 14-7/8" (640 x 926 x 378 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weight Lbs (kg)</td>
<td>99 lbs (45 kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross Weight Lbs (kg)</td>
<td>104 lbs (47 kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation Sound H / L dBA</td>
<td>50 / —</td>
<td>50 / —</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drawing No.</td>
<td>3D062859</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversion Formulae

- kcal/h = kW x 860
- Btu/h = kW x 3414
- cfm = m³/min x 35.3

Note:

- The data are based on the conditions shown in the table below.

<table>
<thead>
<tr>
<th>Cooling</th>
<th>Heating</th>
<th>Piping Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor ; 60°FDB/67°FWB</td>
<td>Outdoor ; 60°FDB/67°FWB</td>
<td>25 ft (7.5 m)</td>
</tr>
</tbody>
</table>

- Indoor ; 70°FDB/60°FDB/67°FWB |

- Outdoor ; 47°FDB/43°FDB/45°FDB |
Part 3
Printed Circuit Board Connector Wiring Diagram

1. Printed Circuit Board Connector Wiring Diagram.................................8
 1.1 Indoor Unit..8
 1.2 Outdoor Unit..10
1. Printed Circuit Board Connector Wiring Diagram

1.1 Indoor Unit

<table>
<thead>
<tr>
<th>Connectors</th>
<th>A1P (Control PCB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) S1</td>
<td>Connector for fan motor</td>
</tr>
<tr>
<td>2) S21</td>
<td>Connector for centralized control (HA)</td>
</tr>
<tr>
<td>3) S32</td>
<td>Connector for heat exchanger thermistor (R1T)</td>
</tr>
<tr>
<td>4) S41</td>
<td>Connector for swing motor (horizontal, vertical)</td>
</tr>
<tr>
<td>5) S43</td>
<td>Connector for solenoid valve</td>
</tr>
<tr>
<td>6) S46</td>
<td>Connector for display PCB</td>
</tr>
<tr>
<td>7) S48</td>
<td>Connector for humidity sensor PCB</td>
</tr>
<tr>
<td>8) SS1</td>
<td>Connector for reduction motor, limit switch (front panel)</td>
</tr>
<tr>
<td>9) SS2</td>
<td>Connector for streamer unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A2P (Display PCB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) S56</td>
<td>Connector for control PCB</td>
</tr>
<tr>
<td>2) S57</td>
<td>Connector for signal receiver / transmitter PCB</td>
</tr>
<tr>
<td>3) S63 (H1P)</td>
<td>Connector for LED PCB (multi monitor)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A3P (Signal Receiver/Transmitter PCB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) S8</td>
<td>Connector for display PCB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A4P (Humidity Sensor PCB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) CN1</td>
<td>Connector for control PCB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A5P (Streamer Unit PCB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) S401</td>
<td>Connector for control PCB</td>
</tr>
<tr>
<td>2) S402</td>
<td>Connector for limit switch for streamer</td>
</tr>
<tr>
<td>3) S403</td>
<td>Connector for streamer</td>
</tr>
</tbody>
</table>

Note: Other designations

<table>
<thead>
<tr>
<th></th>
<th>A1P (Control PCB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) V1</td>
<td>Varistor</td>
</tr>
<tr>
<td>2) FU1</td>
<td>Fuse (3.15A)</td>
</tr>
<tr>
<td>3) LED A</td>
<td>LED for service monitor (green)</td>
</tr>
<tr>
<td>4) JB</td>
<td>Fan speed setting when compressor is OFF on thermostat</td>
</tr>
<tr>
<td></td>
<td>JC Power failure recovery function (auto-restart)</td>
</tr>
<tr>
<td></td>
<td>*Refer to page 233 for details.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A2P (Display PCB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) JA</td>
<td>Address setting jumper</td>
</tr>
<tr>
<td>2) SW1 (S1W)</td>
<td>Forced operation ON / OFF switch</td>
</tr>
<tr>
<td>3) LED2</td>
<td>LED for timer (orange)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A4P (Humidity Sensor PCB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) R2T</td>
<td>Room temperature thermistor</td>
</tr>
</tbody>
</table>
PCB Detail

PCB(1): Control PCB

PCB(2): Display PCB

PCB(3): Signal Receiver / Transmitter PCB

PCB(4): Humidity sensor PCB

PCB(5): Streamer Unit PCB
1.2 Outdoor Unit

Connectors

1) S20 Connector for electronic expansion valve coil
2) S45 Connector for thermal fuse
3) S70 Connector for DC fan motor
4) S80 Connector for four-way valve coil
5) S90 Connector for thermistor (outdoor, heat exchanger, discharge pipe)

Note:

Other designations

1) FU1, FU2 Fuse (3.15A)
2) FU3 Fuse (30A)
3) V1, V2 Varistor
4) LED A LED for service monitor (green)
5) LED5 LED for inverter (green)

PCB Detail

PCB(1): Control PCB
Part 4
Function and Control

1. Description of Operation ... 12
 1.1 Indoor Unit .. 12
 1.2 Outdoor Unit ... 13

2. Main Functions ... 14
 2.1 QUATERNITY Drying Operation .. 14
 2.2 Comfort Sleep Operation ... 16
 2.3 Automatic Operation ... 18
 2.4 Comfort Airflow Mode .. 19
 2.5 Cooling Breeze Operation ... 20
 2.6 Power-airflow Dual Flaps ... 21
 2.7 Wide-angle Louvers ... 21
 2.8 3-D Airflow .. 23
 2.9 POWERFUL Operation .. 23
 2.10 Indoor Unit Quiet Operation .. 24
 2.11 Multi-colored Indicator Lamp ... 24
 2.12 Monitor Brightness Setting .. 25
 2.13 Information Display .. 25
 2.14 Mold-Proof Stick ... 26
 2.15 FLASH STREAMER AIR PURIFYING Operation 27
 2.16 Wipe-clean Flat Panel .. 29
 2.17 Filter Cleaning Indicator (Remote Controller) 30
 2.18 TIMER Operation .. 30
 2.19 Night Set Mode .. 31
 2.20 Table for Special Modes ... 32
 2.21 Thermostat Control ... 33
 2.22 Fan Speed Control for Indoor Units ... 34
 2.23 Draft Prevention (Hot-Start) ... 36

3. Control Specification .. 37
 3.1 Frequency Control .. 37
 3.2 Preheating Operation (Quick Warming Function) 38
 3.3 Four-Way Valve Operation ... 38
 3.4 Compressor Start-up Protection ... 39
 3.5 Fan Speed Control for Outdoor Unit ... 40
 3.6 Fin Thermistor Control .. 41
 3.7 Input Current Control ... 41
 3.8 Peak-cut Control ... 42
 3.9 Indoor Heat Exchanger Freeze-up Protection 43
 3.10 Dew Prevention .. 44
 3.11 Liquid Compression Protection 2 ... 45
 3.12 Discharge Pipe Temperature Control ... 45
 3.13 Automatic Defrosting ... 46
 3.14 Electronic Expansion Valve Control .. 47
1. Description of Operation

1.1 Indoor Unit

- **Room temperature thermistor**
- **Heat exchanger thermistor**
- **Humidity sensor**
- **Fan speed**
- **Switch**
 - ON/OFF (test operation switch)
- **Remote controller**
 - ON/OFF
 - Temperature/airflow rate/airflow direction etc.
 - Diagnosis mode
 - Test operation mode
- **Outdoor unit signal**
- **Setting switch jumper**
 - Address setting

Indoor unit

- **Temperature control**
 - Transmit signals to outdoor unit to change the frequency of compressor according to the difference of temperature between preset temperature and room temperature.
 - Automatic

- **Operation mode**
 - Four-way is in the cooling cycle position.
 - Closes solenoid valve, the unit starts reheating dehumidification in full-scale.

- **Dehumidifying (dry) operation**

- **Cooling operation**
 - Four-way valve is in the cooling cycle position.

- **Heating operation**
 - Four-way valve is in the heating cycle position.

- **Freeze-up protection control**
 - Stop operation when indoor heat exchanger temperature is too low (automatically restored)

- **Heating overload control**
 - Stop operation when indoor heat exchanger temperature is too high. (automatically restored)

- **Condensation control**

- **Defrost control**
 - Switches to cooling cycle and defrosts.
 - Indoor fan stops operation 12 min. maximum

Indoor fan control

- When the airflow rate is set to "auto" the airflow rate will automatically be adjusted according to the difference between the preset temperature and room temperature, and the indoor heat exchanger temperature.
 - Five levels of airflow rate setting from "1" to "5" plus "0" and "OFF" are available.

- **Cold-draft prevention**
 - Indoor fan is halted at "hot start".
 - The airflow rate is restricted.

- **Airflow direction control**
 - You can choose any flow direction from vertical, horizontal and 3-D swing patterns. (3-D mode repeats vertical and horizontal swing alternately)
 - COMFORT airflow mode
 - COOLING BREEZE
 - Draftless operation

- **Service diagnosis function**
 - In case of fault, operation stops automatically and the error code is displayed on the remote controller.

Fan motor

Swing motor

Solenoid valve (for dehumidification)

LED indication

Buzzer

(R10059)
1.2 Outdoor Unit

- **Compressor ON/OFF control**
- **Compressor capacity control**
 - Frequency control
- **3 min. standby function**
- **Defrost control**
 - Switches to cooling cycle and defrosts (Outdoor fan stops)
- **Four-way valve control**
 - Energize/de-energize the four-way valve coil according to the operation mode.
 - The state of the four-way valve is not switched during 3 minutes after the operation mode is switched or the compressor stopped.
- **Warming up function**
 - Preheat the compressor (open-phase operation)
- **Outdoor fan control**
 - Change fan speed according to the operation status.
 - On cooling operation, if outdoor temperature is low, the fan sometimes stops.
 - After compressor stopped, outdoor fan will be operated
- **Through the year cooling control**
 - The compressor will stop according to the outdoor temperature and outdoor heat exchanger temperature in order to protect it during cooling/drying operation.
- **Frost prevention control**
- **Overload control**
- **Electronic expansion valve control**
- **Four-way valve control**
- **Service diagnosis function**
 - In case of fault, operation stops automatically and the type
- **LED indication**
- **Compressor**
- **Four-way valve**
- **Fan motor**
- **Electronic expansion valve**
- **OL**
- **CT**
- **Discharge pipe thermistor**
- **Outdoor air thermistor**
- **Heat exchanger thermistor**
- **OL**
- **CT**
- **Fin thermistor for fan driver**
- **Indoor unit signal**
- **Setting switch jumper**

(R10060)
2. Main Functions

2.1 QUATERNITY Drying Operation

Operation

Features

- **Reheating dehumidifying method is applied.**
 Powerful evaporator eliminates the humidity in your room exclusively. Dry cool air is mixed with warm air from the reheater, thereby blowing in optimal and comfortable dry air.

- **Adjustable humidity even during full cooling**
 It is comfortable even with moderate cooling because you can adjust the indoor humidity to your preference. Decreasing the temperature difference between the conditioned space and outside reduces the perception of it being too cold. It is recommended for those sensitive to cooling as well as a means to energy savings.

![Diagram of QUATERNITY Drying](R10061)

![Diagram of Features](R10062)

![Diagram of Benefits](R10063)
Differences on QUANTERNITY drying and "dry cooling" operation

<table>
<thead>
<tr>
<th>Method</th>
<th>QUANTERNITY Drying</th>
<th>Dry Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Puts a pressure reducing device (solenoid valve) in the center of the heat exchanger of indoor unit to separate it into upper and lower side. The upper side acts as a condenser to heat the air. The lower heat exchanger performs the usual Dry Cooling Operation to make low-temperature and low-humidity air. Both types of air are mixed to make moderate-temperature and low-humidity air for blowing.</td>
<td>As is the cooling mechanism, the Dry Cooling Operation raises latent heat capacity with controlling sensible heat capacity by adjusting the compressor frequency and indoor airflow rate.</td>
</tr>
</tbody>
</table>

Case by case use for dehumidification and cooling dehumidification

As this is a reheating method, it is recommended to eliminate humidity without lowering room temperature if possible (this is recommended when cooling load is small).

The dry cooling does not use a reheating method. In order to eliminate humidity, it is recommended to use at the set temperature lowered by several degrees from the room temperature at operation startup (this is recommended when cooling load is large).

Mechanism

Humidity adjusting method

Adjust by operation frequency of the compressor.
- When operation frequency increases, humidity falls, and when the frequency decreases, humidity fall is suppressed.

Adjust by operation frequency of the compressor and indoor airflow rate.
- When operation frequency increases and indoor airflow rate decreases, the humidity falls.
- When operation frequency decreases and the airflow rate increases, humidity fall is suppressed.

Room temperature adjusting method

Adjust by outdoor airflow rate.
- When outdoor airflow rate increases, room temperature falls, and when it decreases, room temperature fall is suppressed.

Adjust by operation frequency of the compressor.
- When operation frequency increases, the room temperature falls, and when operation frequency decreases, the room temperature fall is suppressed.

Thermostat OFF condition

When room temperature falls.
- Room temp. \(\leq \) preset temp. \(-2.5^{\circ}\text{C}(4.5^{\circ}\text{F})\) or
- Room temp. \(\approx \) preset temp. and the humidity is lower than target humidity (lower by more than 5%).

When room temperature falls.
- Room temp. \(\leq \) preset temp. \(-2.0^{\circ}\text{C}(3.6^{\circ}\text{F})\) or
- Preset temp. \(-1.5^{\circ}\text{C}(2.7^{\circ}\text{F}) < \) room temp. \(\leq \) preset temp. \(-1.0^{\circ}\text{C}(1.8^{\circ}\text{F})\) continues for 10 min.

Thermostat OFF \(\rightarrow \) ON condition

When thermostat OFF condition is not satisfied

- Room temp. \(\geq \) preset temp. \(-0.5^{\circ}\text{C}(0.9^{\circ}\text{F})\) or Preset temp. \(-1.5^{\circ}\text{C}(2.7^{\circ}\text{F}) < \) room temp. \(\leq \) preset temp. \(-1.0^{\circ}\text{C}(1.8^{\circ}\text{F})\) continues for 10 min.

Time to reach the target humidity

Approx.1hour consecutive as a standard (depending on the conditions)

Approx.1hour consecutive as a standard (depending on the conditions)

Remarks (FAQ)

The humidity does not decrease.
- According to the load conditions of your room, the temperature sometimes falls and thermostat ON/OFF repeats. As a result, the room may not be dehumidified enough. Set the temperature lower.

The humidity does not decrease. (Thermostat ON/OFF are repeated.)
- As the reheating method is not used, if you set the temperature close to the room temperature, thermostat ON/OFF are repeated according the load conditions of the room. As a result, the room may not be dehumidified enough. In cooling dehumidification mode, set the temperature lower than the room temperature by several degrees. If you do not want to lower the room temperature too much, the reheating dehumidification operation method is recommended.
2.2 Comfort Sleep Operation

Operation

- Effective mode for COMFORT SLEEP operation
 - Cooling
 - Dry cooling
 - Heating

* Refer to the operation manual for details.

Features

- Outline of function
 The temperature is controlled in unique V-shape pattern within the range of about 2°C (3.6°F) upper and lower. First the room temperature is gradually lowered at the beginning of sleep to induce the lowering of body temperature in sleeping. Then, the room temperature is kept constant, and when the preset wake-up time approaches, the room temperature is gradually raised to induce the raising of body temperature before waking.

- V-shape pattern temperature control system
 - The air conditioner controls the room temperature showing V-shape pattern.

Change in body temperature in human sleep is controlled in ideal V-shape pattern by the airconditioner’s temperature control.
(Reference: Control system adopted for JAL First Class flight)
Human sleep

- Sleep cycle and change in body temperature
 - Sharp lowering of body temperature after falling asleep
 - Maximum difference of change in body temperature
 - Rising of body temperature before wake-up
 - Smooth shift to awakening

Time chart of the V-shape comfort sleep control

Preset temperature is lowered gradually by taking time of as long as 3 hours.

Morning operation which raises the preset temperature gradually

Reference

Effect

Fixed temperature control

V-shape comfort sleep control

Increase of deep sleep
2.3 Automatic Operation

Operation

* Refer to the operation manual for details.

Features

When the AUTO mode is selected with the remote controller, the microcomputer automatically determines the operation mode from cooling and heating according to the room temperature and setting temperature at the time of the operation startup, and automatically operates in that mode. The unit automatically switches the operation mode to cooling or heating to maintain the room temperature at the main unit setting temperature.

Details

1. Remote controller setting temperature is set as automatic cooling / heating setting temperature (18–30°C/64–86°F).
2. Main unit setting temperature equals remote controller setting temperature plus correction value (correction value: 0 deg).
3. Operation ON / OFF point and mode switching point are as follows.
 ① Heating → Cooling switching point:
 Room temperature ≥ Main unit setting temperature +2.5°C(4.5°F).
 ② Cooling → Heating switching point:
 Room temperature < Main unit setting temperature –2.5°C(4.5°F).
 ③ Thermostat ON / OFF point is the same as the ON / OFF point of cooling or heating operation.
4. During initial operation
 Room temperature ≥ Remote controller setting temperature: Cooling operation
 Room temperature < Remote controller setting temperature: Heating operation

Heating / cooling switching point
(Heating thermostat OFF point)
Main unit setting temperature
(Cooling thermostat OFF point)
Cooling / heating switching point

Heating operation
Cooling operation

2.5°C(4.5°F) or higher
1.5°C(2.7°F) or higher
Less than 2.0°C(3.6°F)
2.5°C(4.5°F) or higher

With no compressor capacity supplied
With compressor capacity supplied

(R10069)
2.4 Comfort Airflow Mode

Operation

- Effective mode for comfort airflow mode

- Heating
- Auto / Cooling
- QUATERNITY drying
- Dry cooling

- Fin motion
 - Upper and lower fins halt at the fixed position of the upper side or lower side of the swing.
 - Left and right fins move according to the settings of remote controller.

- Airflow rate
 - Airflow rate is at “automatic”.
 - Refer to the operation manual for details.

Features

- Draftless operation prevents direct blowing of air on people
 Draftless operation deters direct blowing of air on skin. Cool air is blown up in the room and changed into a slow downward flow, circulating into entire room. Meanwhile the warm air is blown down vertically the occupants’ feet, warming the room from the floor.

 - Feel cold during cooling operation
 - When comfort airflow mode is carried out in cooling, comfortable radiant cooling is realized.

 - Feel air during heating
 - When comfort airflow mode is carried out in heating comfortable radiant heating is realized.

Note

In heating operation, it takes time to transmit heat to a distant place because the airflow direction is controlled not to blow directly on humans. It is recommended that this operation mode is used after the room has been warmed up.
2.5 Cooling Breeze Operation

Operation

- Effective mode for cooling breeze airflow
 - Auto / Cooling
 - QUATERNITY drying
 - Dry cooling
 - Flash streamer air purifying

Note: In automatic mode, when actual operation mode is heating, this cool air fluctuation operation does not work. (Indication on remote controller is shown.)

- Fin operation
 - As shown in the following graph, the standard point is the upper limit of the swing so that the air does not touch directly.
 - Depending on the room temperature or the thermostat on/off state, the swing interval is changed.
 - The lower the temperature, the longer the swing interval, thereby comfort is maintained. Left and right fins move as set on the remote controller.

- Airflow rate
 - Airflow rate is controlled automatically.

* Refer to the operation manual for details.

Features

- 1/f fluctuation rhythms switches airflow direction
 - By fluctuating airflow direction you can feel cool even if the room temperature is set high.
 - By 1/f fluctuation rhythm, upper and lower louvers move up and down unlike the conventional up and down swing, and this movement brings you comfortable air like breezes in nature.

![Periodically by 1/f swaying rhythm](R3357)
2.6 Power-airflow Dual Fins

- Triple airflow by the combination with wide-angle louvers

2.7 Wide-angle Fins

Wider airflow eliminates uncomfortable irregular temperature distribution. Wide-angle fins, enabling wider airflow to the left and right, are implemented to provide comfortable airflow to every corner of the room.

- Wide-angle Louvers
 Direction of airflow changes greatly along the shape of curved vane.

- Fin angle
Main Functions

- It can send the airflow to the center of the room even when the air conditioner is installed in the corner of the room.

![Image of airflow to room center](image)

2.8 3-D Airflow

Alternating swing of blades in vertical and horizontal directions circulates the airflow to every corner of the room and prevents uneven temperature distribution. Use of the 3-D airflow control prevents uneven temperature distribution in the whole room. Particularly, the comfortable zone 10 cm (4 inch) above the floor is widened 1.5 times of the conventional zone.

- If it is used at the start of operation, a sudden draft may cause you to feel chilly.
- Use it after the room temperature is stabilized.
2.9 POWERFUL Operation

Operation

- Effective mode for POWERFUL COOLING
 - Cooling
 - Dry cooling
- Effective mode for POWERFUL HEATING
 - Heating

* Refer to the operation manual for details.

Note

- Operating sound becomes slightly louder.
- It is impossible to change the airflow rate, temperature, and humidity.

Features

The airflow rate and the compressor rotating speed are increased from the normal operation for 20 min. This operation is convenient when you return home. Normal operation will be resumed automatically in 20 minutes.

2.10 Indoor Unit Quiet Operation

Features

Forced lowering of the fan speed decreases the airflow rate and reduces airflow sound. Sound is reduced by about 3 dB as compared to that in L speed.

Note

- Airflow rate can not be set.
- Since the performance is somewhat lowered as compared to that in normal operation (70% under rated conditions), the room may not be cooled (or heated) when this operation is used for a long time.
- The indoor unit quiet operation is kept in memory even when the power supply is turned OFF. The indication remains on the display of the wireless remote controller and the indoor unit quiet operation works when the power is turned ON again.
2.11 Multi-colored Indicator Lamp

Features

Current operation mode is displayed in color of the lamp of the indoor unit. Operating status can be monitored even in automatic operation in accordance with the content of actual operation.

- The lamp color changes according to the operation.
 - HEATING ...Red
 - COOLING ...Green
 - QUATERNITY DRYING /
 DRY COOLINGYellow
- The lamp color also changes according to the optional function.
 - FLASH STREAMER AIR PURIFYINGWhite
 (Only for the first 2 seconds during operation of the air conditioner.)

2.12 Monitor Brightness Setting

The brightness of the multi-colored indicator lamp can be adjusted HIGH, LOW, or OFF.

* Refer to the operation manual for details.
2.13 Information Display

Operation

* Refer to the operation manual for details.

Features

- Room temperature, indoor humidity, and outdoor temperature are displayed.
- Point the remote controller at the indoor unit for 2 seconds.

Note

- During operation, the outdoor temperature may sometimes be displayed higher than it actually is in COOLING or QUATERNITY DRYING mode or lower in HEATING mode (especially if frost has accumulated on the outdoor unit), due to the effects of the air blown from the outdoor unit or the temperature of the heat exchanger.
- The lowest indoor and outdoor temperature which can be displayed is -9°C (16°F). This will be displayed even if the actual temperature is lower. The highest temperature is 37°C (99°F). This will be displayed even if the actual temperature is higher.
- The indoor and outdoor temperatures and the humidity that are displayed are those near the sensors attached to the main air conditioner unit.
- The displayed temperature and humidity should only be taken as approximations, as they may be affected if there are objects around the sensors or due to direct sunlight depending on where the air conditioner is installed.
2.14 Mold-Proof Stick

Features

- Drain pan which prevents mold proliferation

The drain pan of the main unit can easily acquire mold so it is equipped with a mold-proof “Stick” providing a mildew-proof, antibacterial, and antivirus effect.

Since the mildew-proof, antibacterial and antivirus agent of the silver group (which is the compound of highly safe titanium oxide and silver) is used as a single agent, drain water is not affected by this agent.

The mildew-proof, antibacterial and antivirus agent is applied to a stick which is covered further with extremely thin resin skin of several microns (resin section without mildew-proof agent on the surface of the resin). The active ingredient is dissolved gradually for about 10 years by immersion and penetration of a mold-proof stick and drain water. Thus, the stick continues working.

- Image
2.15 FLASH STREAMER AIR PURIFYING Operation

Operation

* Refer to the operation manual for details.

FLASH STREAMER AIR PURIFYING

The technology for the real air purifier is adopted for the air conditioner. Our original Flash Streamer system technology used for our Daikin air purifiers is incorporated. This technology far exceeds the air purifying performance of a normal air conditioner.

Daikin’s advanced Flash Streamer Air-Purifying Unit effectively eliminates unpleasant odors, such as cooking or pet odor, cigarette smoke, and some allergens, viruses, and bacteria such as MS2 Virus and E. coli Bacteria.
- **Mechanism of FLASH STREAMER AIR PURIFYING+**
 The streamer discharges high energy electrons, analyzes and removes powerful odors, some allergens, viruses, and bacteria such as the MS2 Virus and E. coli Bacteria at the oxidative distraction speed of 1000 times higher than the usual glow discharge.

- **Removing Formaldehyde**
 - Analyzes and quickly removes building material odors.
 - Analyzing speed is 3.5 times higher than that caused by the natural ventilation.
 - Guideline released by the Ministry of Health, Labour and Welfare in Japan (0.08 ppm)

The formaldehyde concentration in the laboratory (10 m²/108 sq feet) at 0.5-time ventilation and the initial concentration setting of 0.3 ppm (Observed by Daikin)
(Nozaki laboratory, Graduate Course of Health and Society System, Tohoku Bunka Gakuen University)
Deodorizing Performance of Flash Streamer and Titanium Apatite Photocatalyst

Unpleasant odor generating daily in the room such as pet odor or garbage odor is efficiently removed. Speedy deodorization: 90% or more odor has been removed in 10 minutes. Cigarette odor of 80% or more has been removed.

Daily odor removal performance by streamer air purifying (%)

<table>
<thead>
<tr>
<th>Persist rate (%)</th>
<th>Time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturally removed</td>
<td>Over 90% removed in approximately 10 min.</td>
</tr>
</tbody>
</table>

Persist rate of odor ingredients in a box of 1m³ (35.3 cu feet) (Daikin result)

<table>
<thead>
<tr>
<th>Persist rate (%)</th>
<th>Time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturally removed</td>
<td>Over 90% removed in approximately 10 min.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odor Type</th>
<th>Removal</th>
<th>Acetaldehyde</th>
<th>Acetic Acid</th>
<th>Cigarette Odor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia : Pet odor, Bathroom odor</td>
<td>90.6%</td>
<td>76.5%</td>
<td>87.2%</td>
<td>82.7%</td>
</tr>
<tr>
<td>Trimethylamine : Fish odor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl Mercaptan : Garbage odor, Rot odor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide : Egg odor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.16 Wipe-clean Flat Panel

Dirt can be wiped off the panel instantly. There is no grille and the panel can be easily removed for washing.

Remove the panel in the procedure as mentioned below, wipe it lightly with soft cloth soaked with lukewarm water or cold neutral detergent solution and dry it in the shade.

Note: If it is washes with use of polishing powder or scrubber, or in the water hotter than 40°C (104°F), it may be scratched, discolored or deformed.

Caution

- When mounting or dismounting the front panel, use a robust and stable stand and watch your step.
- Proceed to work while supporting the front panel securely by hand.
- Do not use water hotter than 104°F (40°C), or benzin, gasoline, thinner, or other volatiles, polishing powders, or scrubbers.
- Make sure that the front panel is mounted securely.
2.17 Filter Cleaning Indicator (Remote Controller)

After the unit operates for about 2 weeks (about 340 hours), the filter cleaning indicator alerts you that it is time for maintenance. If the filter is left dirty, the power consumption increases by about 10%. It is recommended to maintain it periodically to ensure energy-saving operation.

- How to reset the filter cleaning indicator

When the RESET ALARM button on the remote controller is pressed for about 2 seconds pointed toward the indoor unit after maintenance of the filter, the filter-cleaning indicator disappears.

2.18 TIMER Operation
2.18.1 24-hour ON/OFF Timer

Operation

* Refer to the operation manual for details.

Features

- Time can be set in 10 minute increments.
- When the 24-hour ON/OFF is set, the indication of present time disappears.
- Time is kept in memory in the next operation unless it is cancelled.
- The clock error is ±30 seconds per month.

ON Timer
The microcomputer monitors the indoor temperature and outdoor temperature before preset time and the operation is started automatically 1 hour before at maximum so that the room temperature becomes optimum at the preset time.
2.18.2 COUNTDOWN OFF Timer

Operation

COUNTDOWN OFF timer

* Refer to the operation manual for details.

Features

- The COUNTDOWN OFF timer sets the time by simple button pressing. The operation is stopped when the set time comes. The time can be set in the unit of 0.5 hour for maximum 9.5 hours. It can be used in combination with the ON timer.

2.18.3 Combination of ON Timer and OFF Timer

- ON timer and OFF timer, or ON timer and COUNTDOWN OFF timer can be used in combination.
 Refer to the operation manual for details.

2.19 Night Set Mode

- When you set the COUNTDOWN OFF TIMER or OFF TIMER, the unit is operated automatically in night set mode.

Cooling / Dry cooling

- Temperature setting
 - +0.5°C (0.9°F)
- Operation stops at the set hours

Heating

- Temperature setting
 - +2°C (3.6°F)
2.20 Table for Special Modes

<table>
<thead>
<tr>
<th>Mode Selection</th>
<th>Description</th>
</tr>
</thead>
</table>
| **A. Forced operation mode** | *Indoor unit [ON/OFF]*
 Left for 15 min. |
| **B. Indoor unit demonstration** | *Remote controller [CANCEL] 5 sec.*
 Left for 60 sec.
 Mode selection
 Remote controller [CLOCK] 5 sec.
 Remote controller [CLOCK] |
| **C. Diagnosis mode** | *Remote controller [CANCEL] 5 sec.*
 Left for 60 sec.
 Remote controller [CLOCK] 5 sec.
 Remote controller [CLOCK] |
| **D. Trial operation mode** | *Remote controller [ON/OFF]*
 Left for 30 min.
 Mode selection
 Remote controller [CLOCK] 5 sec.
 Remote controller [CLOCK] |

★: For FTXG 09/12/15 models, you cannot select any other mode but trial operation mode.

A. Forced operation mode:
Forced operation mode will be set by pressing the ON/OFF button for between 5 to 9 seconds while the unit is not operating. The buzzer beeps, and the timer and multi-colored indicator lamp illuminate. The operation ends automatically after 15 minutes.

B. Indoor unit demonstration:
You can see the demonstration of the multi-colored indicator lamp, open / close movement of the front panel, and swing of the flaps.

C. Diagnosis mode:
Diagnosis mode is improved to enable one-touch indication by applying two-way communication. Refer to page 85 for details.

D. Trial operation mode:
- You can select a mode for trial operation on the remote controller.
- The operation continues for approx. 30 minutes.
- The delay time to start compressor can be set by “△ (forward)” button by 0 min., 1 min. or 3 minutes.

Refer to the installation manual on page 63 for details.
2.21 Thermostat Control

Outline

When COOLING or HEATING mode is selected with the remote controller, the microcomputer prevents the unit from turning OFF until the requested room temperature is achieved. Details

In the table below you can find the thermostat ON and OFF conditions for a set point of 70°F(21°C).

<table>
<thead>
<tr>
<th></th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set point</td>
<td>70°F(21°C)</td>
<td>70°F(21°C)</td>
</tr>
<tr>
<td>→ shift</td>
<td>0.5°C(0.9°F)</td>
<td>2.0°C(3.6°F)</td>
</tr>
<tr>
<td>OFF</td>
<td>67.1°F(19.5°C)</td>
<td>76.1°F(24.5°C)</td>
</tr>
<tr>
<td>ON</td>
<td>69.8°F(21°C)</td>
<td>73.4°F(23°C)</td>
</tr>
<tr>
<td>Monitoring</td>
<td>68.068.9°F(2020.5°C)</td>
<td>74.375.2°F(23.524°C)</td>
</tr>
<tr>
<td></td>
<td>10min</td>
<td>10sec</td>
</tr>
</tbody>
</table>

Cooling operation:
The unit will turn OFF by thermostat when the room temperature reaches 19.5°C(67.1°F). When the room temperature rises above 21°C(70°F), the thermostat turns back ON and the unit resumes its operation. When the room temperature is between 20~20.5°C(68.0~68.9°F), it is in the monitoring zone. If for cooling, the room temperature stays in the monitoring zone for more than 10 minutes, the thermostat will also turn back ON and the unit will resume operation.

Heating operation:
The unit will turn ON by thermostat when the room temperature reaches its set value + a shift of 2.0°C (3.6°F) (e.g. room temperature : 21°C (70°F) => thermostat ON temperature : 23°C (73.4°F)). When the room temperature rises above 24.5°C (76.1°F), the thermostat turns back OFF. When the room temperature is between 24~23.5°C (75.2~74.3°F), it is in the monitoring zone. If for heating, the room temperature stays in the monitoring zone for more than 10 minutes, the thermostat will also turn back ON and the unit will resume operation.

Between the indoor unit and the position of the end user, there is taken into calculation a temperature shift of 0.5°C(0.9°F in the control logic). This means that at thermostat OFF, the temperature at the end user is e.g. 20°C(68.0°F).
2.22 Fan Speed Control for Indoor Units

Control mode

The airflow can be automatically controlled depending on the difference between the set temperature and the room temperature. This is done through speed control and Hall IC control.

Phase steps

Speed control and fan speed control contains different steps:

- **Step**: Cooling | Heating | Dry mode
- **LLL**
- **LL**
- **SL (Quiet)**
- **L**
- **ML**
- **M**
- **MH**
- **H**
- **HH (POWERFUL)**

<table>
<thead>
<tr>
<th>Step</th>
<th>Cooling</th>
<th>Heating</th>
<th>Dry mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL (Quiet)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>900</td>
<td>970</td>
<td>1000</td>
</tr>
<tr>
<td>ML</td>
<td>1020</td>
<td>1080</td>
<td>1140</td>
</tr>
<tr>
<td>M</td>
<td>1140</td>
<td>1190</td>
<td>1260</td>
</tr>
<tr>
<td>MH</td>
<td>1260</td>
<td>1310</td>
<td>1380</td>
</tr>
<tr>
<td>H</td>
<td>1380</td>
<td>1440</td>
<td>1520</td>
</tr>
<tr>
<td>HH (POWERFUL)</td>
<td>1440</td>
<td>1520</td>
<td></td>
</tr>
</tbody>
</table>

= Within this range the airflow rate is automatically controlled when the FAN setting button is set to automatic.

1. During POWERFUL operation, fan rotates at H tap + 80 rpm.
2. Fan stops during defrost operation.
3. In time of thermostat OFF, the fan rotates at the following speed.
 - **Cooling**: The fan keeps rotating at the set tap.
 - **Heating**: The fan stops.

09 class

<table>
<thead>
<tr>
<th>Step</th>
<th>Cooling</th>
<th>Heating</th>
<th>Dry mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLL</td>
<td>590</td>
<td>720</td>
<td>1000</td>
</tr>
<tr>
<td>LL</td>
<td>790</td>
<td>900</td>
<td>1140</td>
</tr>
<tr>
<td>SL (Quiet)</td>
<td>970</td>
<td>1080</td>
<td>1260</td>
</tr>
<tr>
<td>L</td>
<td>1190</td>
<td>1310</td>
<td>1340</td>
</tr>
<tr>
<td>ML</td>
<td>1200</td>
<td>1350</td>
<td>1430</td>
</tr>
<tr>
<td>M</td>
<td>1260</td>
<td>1380</td>
<td></td>
</tr>
<tr>
<td>MH</td>
<td>1380</td>
<td>1460</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1460</td>
<td>1520</td>
<td></td>
</tr>
<tr>
<td>HH (POWERFUL)</td>
<td>1460</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12 class

<table>
<thead>
<tr>
<th>Step</th>
<th>Cooling</th>
<th>Heating</th>
<th>Dry mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLL</td>
<td>590</td>
<td>750</td>
<td>1020</td>
</tr>
<tr>
<td>LL</td>
<td>820</td>
<td>950</td>
<td>1210</td>
</tr>
<tr>
<td>SL (Quiet)</td>
<td>900</td>
<td>1080</td>
<td>1350</td>
</tr>
<tr>
<td>L</td>
<td>1130</td>
<td>1250</td>
<td>1430</td>
</tr>
<tr>
<td>ML</td>
<td>1250</td>
<td>1380</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1380</td>
<td>1460</td>
<td></td>
</tr>
<tr>
<td>MH</td>
<td>1460</td>
<td>1520</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1520</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>HH (POWERFUL)</td>
<td>1520</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15 class

<table>
<thead>
<tr>
<th>Step</th>
<th>Cooling</th>
<th>Heating</th>
<th>Dry mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLL</td>
<td>590</td>
<td>790</td>
<td>1140</td>
</tr>
<tr>
<td>LL</td>
<td>860</td>
<td>1000</td>
<td>1280</td>
</tr>
<tr>
<td>SL (Quiet)</td>
<td>950</td>
<td>1140</td>
<td>1420</td>
</tr>
<tr>
<td>L</td>
<td>1190</td>
<td>1310</td>
<td>1500</td>
</tr>
<tr>
<td>ML</td>
<td>1310</td>
<td>1440</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1440</td>
<td>1520</td>
<td></td>
</tr>
<tr>
<td>MH</td>
<td>1520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HH (POWERFUL)</td>
<td>1520</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the above table you can see all the different fan speeds of the indoor units fan motor.

When selecting AUTOMATIC airflow control on the remote controller, the indoor fan speed will be regulated according to the difference between the room temperature and the required set point in cooling mode. On heating mode, the indoor fan speed will be regulated according to the indoor heat exchanger temperature and the difference between the room temperature and the required set point.

Cooling
Heating

<table>
<thead>
<tr>
<th>Room temp. area</th>
<th>Indoor heat exchanger temperature area</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>A</td>
<td>MH</td>
</tr>
<tr>
<td>B</td>
<td>MH</td>
</tr>
<tr>
<td>C</td>
<td>MH</td>
</tr>
<tr>
<td>D</td>
<td>MH</td>
</tr>
<tr>
<td>E</td>
<td>MH</td>
</tr>
<tr>
<td>F</td>
<td>MH</td>
</tr>
<tr>
<td>G</td>
<td>MH</td>
</tr>
<tr>
<td>H</td>
<td>MH</td>
</tr>
<tr>
<td>I</td>
<td>MH</td>
</tr>
<tr>
<td>J</td>
<td>MH</td>
</tr>
<tr>
<td>K</td>
<td>MH</td>
</tr>
<tr>
<td>L</td>
<td>MH</td>
</tr>
</tbody>
</table>

Room temperature area

- **Set point - room temperature**
 - °C / °F
 - -1.5/-2.7 A
 - -1.0/-1.8 B
 - -0.5/-0.9 C
 - 0/0 D
 - 0.5/0.9 E
 - 1.0/1.8 F
 - 1.5/2.7 G
 - 2.0/3.6 H
 - 2.5/4.5 I
 - 3.0/5.4 J
 - 3.5/6.3 K
 - 4.0/7.3 L
 - 4.5/8.1 L

The value will increases when the operation starts.

Indoor heat exchanger temperature area

- 55°C(131°F) G
- 50°C(122°F) F
- 45°C(113°F) E
- 40°C(104°F) D
- 35°C(95°F) C
- 30°C(86°F) B
- 25°C(77°F) A

(R10087)

(R10088)
2.23 Draft Prevention (Hot-Start)

Outline
Draft prevention control is carried out to prevent a cold draft feeling when the unit is started in heating operation. This also will happen if the indoor heat exchanger temperature drops.

Details
The outdoor unit will prevent a cold draft by monitoring the indoor heat-exchanger thermistor. It will increase the minimum compressor frequency if the indoor heat exchanger drops below 33°C (91.4°F). If the indoor heat exchanger is not hot enough, the indoor fan will not start at the set speed.

\[F_{\text{min}} = -2\text{Hz}/120\text{sec} \]

\[
\begin{array}{c|c|c|c}
35^\circ\text{C} (95^\circ\text{F}) & \text{No change (steady area)} \\
33^\circ\text{C} (91.4^\circ\text{F}) & F_{\text{min}} = +4\text{Hz}/120\text{sec} \end{array}
\]

The fan speed will be reduced step by step. The limitation of the fan speed will be lifted when the indoor heat exchanger temperature rises above F°C.

(Unit: °C/°F)

<table>
<thead>
<tr>
<th>Fan speed Limitation</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>ML</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>LL</td>
</tr>
<tr>
<td>LL</td>
<td>LLL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 class</td>
<td>10/50</td>
<td>25/77</td>
<td>33/91.4</td>
<td>34/93.2</td>
<td>35/95</td>
<td>36/96.8</td>
</tr>
<tr>
<td>12 class</td>
<td>10/50</td>
<td>25/77</td>
<td>35/95</td>
<td>37/98.6</td>
<td>38/100.4</td>
<td>39/102.2</td>
</tr>
<tr>
<td>15 class</td>
<td>10/50</td>
<td>25/77</td>
<td>35/95</td>
<td>37/98.6</td>
<td>38/100.4</td>
<td>39/102.2</td>
</tr>
</tbody>
</table>
3. Control Specification

3.1 Frequency Control

Outline

Once the timers for the compressor start-up have elapsed, the unit will determine its compressor frequency from the following parameters:

\(\Delta D \): The difference between the room temperature and the setpoint (°C)

Indoor frequency command

The indoor command frequency is determined by the difference between the room temperature and the temperature set by the remote controller. Out of this difference a \(\Delta D \) value (D from difference) is calculated which is then sent to the outdoor unit.

Underneath you’ll find a table, which relates the different \(\Delta D \) values to the temperature differences.

<table>
<thead>
<tr>
<th>Temperature difference °C(°F)</th>
<th>(\Delta D) signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (0)</td>
<td>"Th OFF"</td>
<td>2.0 (3.6)</td>
<td>4</td>
<td>4.0 (7.2)</td>
<td>8</td>
<td>6.0 (10.8)</td>
<td>C</td>
</tr>
<tr>
<td>0.5 (0.9)</td>
<td>1</td>
<td>2.5 (4.5)</td>
<td>5</td>
<td>4.5 (8.1)</td>
<td>9</td>
<td>6.5 (11.7)</td>
<td>D</td>
</tr>
<tr>
<td>1.0 (1.8)</td>
<td>2</td>
<td>3.0 (5.4)</td>
<td>6</td>
<td>5.0 (9.0)</td>
<td>A</td>
<td>7.0 (12.6)</td>
<td>E</td>
</tr>
<tr>
<td>1.5 (2.7)</td>
<td>3</td>
<td>3.5 (6.3)</td>
<td>7</td>
<td>5.5 (9.9)</td>
<td>B</td>
<td>7.5 (13.5)</td>
<td>F</td>
</tr>
</tbody>
</table>

*Th OFF = Thermostat OFF

Table: \(\Delta D \) value summary table

Initial frequency setting

When starting the compressor, the frequency must be (re-) initialized in accordance to the \(\Delta D \) value. Out of this parameters, the micro-controller will determine the initial compressor frequency. The frequency changes because of the decreasing \(\Delta D \) value of the indoor unit. The frequency also changes through limiting functions, which are protecting the unit. Some of these directly control the operating frequency. Other functions will change the upper or lower frequency limit, preventing the unit from going into a certain operation frequency that will damage it.

PI Control

The PI control will ensure a fast and efficient way of determining the compressor frequency build up.

Details

I control

This regulator will look at the temperature difference between the room temperature and the set point (\(\Delta D \)).

- \(\Delta D > 4 \) then the compressor frequency will rise with \(\Delta D \) Hz per 120 sec.
- \(\Delta D = 4 \) then there is no change.
- \(\Delta D < 4 \) then the compressor frequency will drop with 4 Hz per 120 sec.

P control

This regulator will look at the differences between the room temperatures and the setpoints (\(\Delta D \)) in time.

Compare the current \(\Delta D \) and the last \(\Delta D \) (20 seconds before). If any change is observed, correct the value calculated by the following formula.
3.2 Preheating Operation (Quick Warming Function)

Outline
Operate the inverter in the open phase operation with the conditions including the preheating command from the discharge pipe temperature.

Details

ON condition
The preheating operation starts when the discharge pipe temperature drops. At that time, the inverter in open phase operation starts. This means that a small current is send through one of the compressor windings in order to heat up the inside of the compressor. This is done in order to prevent liquid compression at start-up of the compressor when the outdoor temperature is low.

OFF condition
When the discharge temperature is higher than a certain value, the inverter in open phase operation stops.

The inverter in open phase control consumes approximately 25–40W.

Note
When the preheating operation is active, there is the possibility that a frequency noise can be noticed at the outdoor unit site due to the open phase control.

outdoor temperature ≥ 7°C (44.6°F)

![Diagram 1](R10091)

outdoor temperature < 7°C (44.6°F)

![Diagram 2](R10092)

3.3 Four Way Valve Operation

Outline
Because the four-way valve only operates properly when there is an adequate pressure difference, the four-way valve compensation function has been implemented to insure this minimal pressure difference.

Details
The four-way valve compensation function ensures the four-way valve operation by demanding a certain minimal operation frequency for a certain time. By doing this, the unit ensures the switching of the four-way valve.
When this function is enabled, the unit will not look at the other safeties (with the exception of input current control).
The four-way valve compensation function is engaged in four cases:

- When starting the compressor for heating.
- When the operation mode is changed.
- When starting the compressor for defrosting.
- When starting the compressor after a power failure (auto-restart).

No power to the valve --> cooling.
Power to the valve --> heating.

<table>
<thead>
<tr>
<th>Function</th>
<th>Frequency [Hz]</th>
<th>Time [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Heating</td>
<td>outdoor temperature < 16°C(60.8°F) 52</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>outdoor temperature ≥ 16°C(60.8°F) – 0.9 x outdoor temperature (°C) + 68</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Compressor Start-up Protection

Details
The gradual buildup of the upper operation frequency is illustrated in the graph below.

![Compressor protection function graph](R10093)

Timers and frequencies for the compressor protection function:

<table>
<thead>
<tr>
<th>Function</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCG1</td>
<td>52</td>
</tr>
<tr>
<td>FCG2</td>
<td>52</td>
</tr>
<tr>
<td>FCG3</td>
<td>58</td>
</tr>
<tr>
<td>FCG4</td>
<td>80</td>
</tr>
<tr>
<td>FCG5</td>
<td>98</td>
</tr>
<tr>
<td>TCG1</td>
<td>450</td>
</tr>
<tr>
<td>TCG2</td>
<td>90</td>
</tr>
<tr>
<td>TCG3</td>
<td>90</td>
</tr>
<tr>
<td>TCG4</td>
<td>60</td>
</tr>
<tr>
<td>TCG5</td>
<td>60</td>
</tr>
</tbody>
</table>
3.5 Fan Speed Control for Outdoor Unit

Outline
The fan speed control regulates the speed of the outdoor fan.

Details
Fan control is carried out according to the following conditions.
1. Fan ON control for electric component cooling fan
2. Fan control when defrosting
3. Fan OFF delay when stopped
4. ON/OFF control when cooling operation
5. Fan control during heating operation

Cooling

<table>
<thead>
<tr>
<th>Outdoor temperature</th>
<th>Inverter fan ON</th>
<th>Inverter fan OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>-12°C (10.4°F)</td>
<td></td>
<td>(R10094)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>09</td>
<td>800rpm</td>
</tr>
<tr>
<td>12</td>
<td>850rpm</td>
</tr>
<tr>
<td>15</td>
<td>850rpm</td>
</tr>
</tbody>
</table>

The fan speed is fixed.

Heating

<table>
<thead>
<tr>
<th>Class</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>09</td>
<td>750rpm</td>
</tr>
<tr>
<td>12</td>
<td>760rpm</td>
</tr>
<tr>
<td>15</td>
<td>810rpm</td>
</tr>
</tbody>
</table>

The fan speed is fixed.
3.6 Fin Thermistor Control

Outline
When the fin temperature rises, the fan rotation speed will increase to protect the electrical parts. This function is only applicable for inverters. The temperature sensor is located on the top of the radiation fins connected to the power elements of the electronic inverter circuit (PAM & PWM).

Details

<table>
<thead>
<tr>
<th>Return area:</th>
<th>86°C (186.8°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up area:</td>
<td>76°C (168.8°F)</td>
</tr>
<tr>
<td>Steady area:</td>
<td>73°C (163.4°F)</td>
</tr>
<tr>
<td>Step down area:</td>
<td>71°C (159.8°F)</td>
</tr>
<tr>
<td>Stop area:</td>
<td>68°C (154.4°F)</td>
</tr>
</tbody>
</table>

Return area:
- Limiting control for the minimum rotation speed of fan is cancelled.

Up area:
- The minimum rotation speed of fan decreases by 10 rpm / 60 seconds.

Steady area:
- The minimum rotation speed of fan remains constant.

Step down area:
- The minimum rotation speed of fan increases by 60 rpm / 30 seconds.

Stop area:
- The compressor will stop.

3.7 Input Current Control

Details

Class	Cooling 09	12	15	Heating 09	12	15
I4 (A)| 14 | 14 | 14 | 14 | 14 | 14 |
I3 (A)| 5.5 | 7.5 | 9.75 | 10.5 | 10.5 | 10.5 |
3.8 Peak-cut Control

Outline
In heating operation, malfunctioning of the unit (for example dirty filters) can cause the discharge pressure to rise excessively and reach unacceptable levels. To avoid this, peak-cut control will monitor the condensing temperature and when necessary decrease the operating frequency in an attempt to lower the discharge pressure at an early stage.

Details
In a similar way as with the freeze protection function, the peak-cut control function regulates the maximum operation frequency as indicated in the picture underneath.

Return area:
- Limiting control for the maximum frequency is cancelled.

Steady area:
- The maximum frequency remains constant.

Step down area:
- The maximum frequency in this control is defined as (operation frequency – 2 Hz).
- After this, the frequency decreases by 2 Hz / 1 second until it reaches the steady area.

Stop area:
- When this state continues for 5 seconds, the compressor will stop.

*I3 has the cooling and heating current, respectively.

Fig.: Peak-cut control function graph

Return area:
- Limiting control for the maximum frequency is cancelled.

Up area:
- The maximum frequency increases by 2Hz / 3 minutes.

Steady area:
- The maximum frequency remains constant.

Step down area:
- The maximum frequency decreases by 4Hz / 20 seconds.
Stop area:
- The compressor, indoor fan, and outdoor fan will stop.

3.9 Indoor Heat Exchanger Freeze-up Protection

Outline
During cooling or dry operation, a malfunction of the unit may cause the indoor heat exchanger's temperature to drop excessively. To prevent the indoor heat exchanger from freezing up, the freeze protection function will reduce the compressor's maximum operation frequency.

Details
The freeze protection function regulates the maximum operation frequency as indicated in the following graph:

Return area:
- Limiting control for the maximum frequency is cancelled.

Up area:
- The maximum frequency increases by 2Hz / 90 seconds.

Steady area:
- The maximum frequency remains constant.

Step down area:
- The maximum frequency decreases by 2Hz / 60 seconds.

Stop area:
- The compressor stops completely and the outdoor unit fan will stop. The indoor unit fan operates at LL tap. The system will stay OFF until the indoor heat exchanger temperature goes to the return area.
3.10 Dew Prevention

Outline

Cooling the air around us means that the air is dehumidified (condensation of water on the coil). But because the air is cooled down, less water can be absorbed by the air and as a consequence the relative humidity of the air rises. When the relative humidity of the outlet air nears 100%, you will have water being blown in. To prevent this from happening, the unit will, under certain circumstances, change its target evaporating temperature and the frequency of the compressor. Normally speaking, even under these conditions (dew-prevention safety active), the room should still be cooled down, only slower. Of course, if the indoor unit is on the small size in comparison to the heat load, this will not be the case and capacity shortage complaints will follow.

Details

1. Conditions for initiating the dew prevention function.
 ① Operation mode is in cooling/dry.
 ② Compressor is running.
 ● The target temperature of heat exchanger (°C) is calculated by the following formula with using the room temperature and indoor humidity.

 \[A = \frac{15}{16} \times \text{room temperature} + (\text{indoor humidity} + 5) \times \frac{70}{256} + \beta \]

<table>
<thead>
<tr>
<th>Mode</th>
<th>Swing</th>
<th>Flap</th>
<th>(\beta) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>—</td>
<td>—</td>
<td>−34</td>
</tr>
<tr>
<td>Cooling</td>
<td>ON</td>
<td>—</td>
<td>−34</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Downward</td>
<td>−34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upward</td>
<td>−32</td>
</tr>
</tbody>
</table>

 Return area:
 ● Limiting control for the maximum frequency is cancelled.

 Up area:
 ● The maximum frequency increases by 2Hz / 90 seconds.

 Steady area:
 ● The maximum frequency remains constant.

 Step down area:
 ● The maximum frequency decreases by 2Hz / 60 seconds.

2. Conditions for ending the dew prevention function
 ① Operation mode is not in cooling/dry.
 ② Compressor is not running.
3.11 Liquid Compression Protection 2

Outline
The function will ensure a pressure differential between the high pressure and the low pressure. This is required when cooling with low outdoor air temperature because HP gets weak and you will have small capacity and a high power input. The compressor stops according to the conditions of the outdoor air temperature.

Details

Conditions
- Cooling or Dry cooling mode
- Not in forced cooling mode
- Outdoor air temperature < –12°C (10.4°F)

If all of these are fulfilled, the compressor is stopped. The system resumes operation when the outdoor air temperature rises above –12°C (10.4°F).

3.12 Discharge Pipe Temperature Control

Outline
Overheating has a negative influence on the operating lifetime of a compressor which is why this function will limit the maximum operating frequency of the compressor if deemed necessary.

Details

Discharge pipe temperature °C (°F)

![Diagram of Discharge Pipe Temperature Control]

Correction value (a) = correction value by operation frequency (b) + correction value by outdoor temperature (c)

Correction value by operation frequency (b)

- Correction value (b) = 0°C (1.8°F) at 50rps
- Correction value (b) = 8°C (14.4°F) at 35rps
- Correction value (b) = 12°C (21.6°F) at 30rps
Correction value by outdoor temperature (c)

Return area:
- Limiting control for the maximum frequency is cancelled.

Up area:
- The maximum frequency increases by 2Hz / 60 seconds.

Steady area:
- The maximum frequency remains constant.

Step down area:
- The maximum frequency decreases by 4Hz / 30 seconds.

Stop area:
- The compressor stops and will only restart when the sensor senses a temperature below set point.

3.13 Automatic Defrosting

Defrost Control Start Condition

Heat mode
- 6 or more minutes passed since the compressor started its operation
- The cumulative time of heating operation reached 25 minutes or more
- The state that the outdoor heat exchanger temperature < \(\Delta \)°C has continued for 1 minute or more
- Heating mode
- Compressor is in operation
- The cumulative time of heating operation reached 4 hours or more
- Outdoor heat exchanger temperature < 0°C (32°F)

\(\Delta \)°C is calculated by the following formula:

\[
\Delta \text{ (°C)} = \frac{-17}{256} \times \text{compressor frequency} + \frac{43}{64} \times \text{outdoor air temperature} + \frac{1}{6} \text{ (°C)} - 20°\text{C} (\cdot4°\text{F}) \leq \Delta \leq -4°\text{C} (24.8°\text{F})
\]

<table>
<thead>
<tr>
<th>Time of the last defrost operation</th>
<th>°F (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>short</td>
<td>-6 (21.2)</td>
</tr>
<tr>
<td>long</td>
<td>+4 (39.2)</td>
</tr>
</tbody>
</table>

NOTE: (°F) conversion temperatures are included for reference; the formula must be carried out in °C.
Operation during Defrosting and Termination Condition

- Operation should be conducted at 64Hz during defrosting.
- Defrosting operation must be conducted for 2 minutes, and after that, defrosting operation is conducted until the outdoor heat exchanger temperature reaches the defrost cancellation temperature at \(^\circ C \).
- After the temperature has reached the defrost cancellation temperature, the defrosting should be terminated.

\(^\circ C \) is calculated by the following formula:

\[
^\circ C = 18 - \frac{22}{64} \times \text{outdoor air temperature (}^\circ C\text{)}
\]

However, when the calculated value is outside the range between 6\(^\circ\)C (42.8\(^\circ\)F) and 20\(^\circ\)C (68\(^\circ\)F), if it is less than 6\(^\circ\)C (42.8\(^\circ\)F), 6 (42.8) should be adopted and if it is more than 20\(^\circ\)C (68\(^\circ\)F), 20 (68) is adopted, as the defrost cancellation temperature. **Defrosting Time Chart:**

![Defrosting Time Chart](chart)

NOTE: (\(^\circ\)F) conversion temperatures are included for reference; the formula must be carried out in \(^\circ\)C.

3.14 Electronic Expansion Valve Control

Outline

The following items are included in the electronic expansion valve control.

Electronic expansion valve is fully closed

- Electronic expansion valve is fully closed when turning on the power.
- Pressure equalizing control

Open Control

- Electronic expansion valve control when starting operation
- Control when frequency changed
- Control for defrosting (only for heat pump model)
- Control when a discharge pipe temperature is abnormally high
- Control when the discharge pipe thermistor is disconnected

Feedback Control

- Discharge pipe temperature control

- Maximum electronic expansion valve opening : 470 pulses
- Minimum electronic expansion valve opening : 52 pulses
The gray squares indicate which secondary functions are active or can be activated.

<table>
<thead>
<tr>
<th>Operation pattern</th>
<th>Main operation control</th>
<th>Control when frequency is changed</th>
<th>Control for abnormally high discharge temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power ON</td>
<td>Power initialization control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cooling 1 room operation</td>
<td>Control when starting</td>
<td>—</td>
<td>〇</td>
</tr>
<tr>
<td>Stop</td>
<td>Pressure equalization control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Heating 1 room operation</td>
<td>Control when starting</td>
<td>—</td>
<td>〇</td>
</tr>
<tr>
<td>Stop</td>
<td>Pressure equalization control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Heating operation discharge sensor disconnected</td>
<td>Control when starting</td>
<td>—</td>
<td>〇</td>
</tr>
<tr>
<td>Stop</td>
<td>pressure equalization control</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

3.14.1 Power Initialization Control

Outline
When turning on the power to the unit, the expansion valve is initialized to a certain starting position.

Details
At initialization the following steps are executed.

- The electronic expansion valve is closed by 700 pulses (to make sure it is closed shut).
- After closing the valve, it is opened again by 400 pulses.

3.14.2 Control when Starting

Outline
When the unit is switched on, some adjustments to the expansion valve opening have to be made in order to prevent excessive heating or moisture.

Cooling
$$ EV = K_{evopf} \times \Delta F_{com} + K_{evopdoe} \times D_A + K_{evopdoa} \times D_{OA} + P_5 $$

Heating
In 2 min. from the operation starts.
$$ EV = K_{evopf} \times \Delta F_{com} + P_5 $$

After 2 min. from the operation starts.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{OA} \leq d_{oaopf}$</td>
<td>$EV = K_{evopf} \times \Delta F_{com} + P_5$</td>
</tr>
<tr>
<td>$d_{oaopf} < D_{OA} \leq d_{oaopf} + d_{doaopf}$</td>
<td>$EV = K_{evopf} \times \Delta F_{com} + P_5 + K_{evopdoa} \times (D_{OA} - d_{oaopf})$</td>
</tr>
<tr>
<td>$d_{oaopf} + d_{doaopf} < D_{OA}$</td>
<td>$EV = K_{evopf} \times \Delta F_{com} + P_5 + K_{evopdoa} \times d_{doaopf}$</td>
</tr>
</tbody>
</table>
Ending Condition
After 6 minutes from the time compressor starts.
or
Discharge temperature(°C) + 6 > condensation temperature (°C) > (36°C) (96.8°F)

\[\text{Kevo}_{pf} : \text{A constant depending on the outdoor unit type} \]
\[P_5 : \text{A constant depending on the outdoor unit type} \]
\[\text{Kevo}_{pdce} : \text{A constant depending on the outdoor unit type} \]
\[\text{Kevo}_{pda} : \text{A constant depending on the outdoor unit type} \]
\[d_{oaopf} : \text{A constant} \]
\[dd_{oaopf} : \text{A constant} \]
\[D_A : \text{The room temperature (°C)} \]
\[D_OA : \text{The outdoor temperature (°C)} \]
\[\Delta F_{com} : \text{Compressor frequency change} \]

3.14.3 Control when Frequency is Changed

Outline
Because the operation frequency is one of the variables in the calculation of the original opening of the expansion valve, the opening will have to be recalculated when the operation frequency is changed. During this recalculation, the target discharge temperature control will be deactivated.

Details
This control will engage when the operation frequency is changed during the target discharge temperature control. When this happens, a 10 seconds timer is set. Once this timer expires, the expansion valve opening is recalculated using the formulas below:

\[\text{PHNHz} = \text{PHNZ} + \text{KEVO}_{PF} \times (\text{FMK} - \text{FMKZ}) \]

Where:
\[\text{PHNZ} = \text{expansion valve opening before change} \]
\[\text{PHNHz} = \text{expansion valve opening after change} \]
\[\text{KEVO}_{PF} = \text{constant value (cooling : 2.7, heating : 2.0)} \]
\[\text{FMK} = \text{operation frequency after change} \]
\[\text{FMKZ} = \text{operation frequency before change} \]

The expansion valve opening is only changed when \(\text{FMK} - \text{FMKZ} > 4 \).
3.14.4 Superheat (SH) is required to ensure that only gas and not liquid enters the compressor. Because of the direct link between the SH and the discharge temperature (see the following figure show the target discharge temperature), a control on the discharge temperature was made to be one of the main control systems of Daikin airconditioners. The **Target Discharge Pipe Temperature Control**

Outline

Superheat (SH) is required to insure that only gas and not liquid is sucked up by the compressor. Because of the direct link between the SH and the discharge temperature (see Fig. target discharge temperature), a control on the discharge temperature was made to be one of the main control systems of Daikin air-conditioners. The discharge temperature and SH are regulated by the expansion valve.

Details

The adjustment to the expansion valve opening is determined by the difference between the actual discharge temperature and the target discharge temperature.

Starting conditions for this operation are:
- The starting control and the 'operation room change' control (only for multi system) are inactive.
- The frequency changing control, high discharge temperature control and disconnected discharge thermistor control are inactive.
- The defrost operation is inactive.
- The compressor is active.

Target discharge temperature = $\alpha \times$ condensing temperature $- \beta \times$ evaporating temperature $+ \gamma$

α, β, γ; predetermined constants related to different model types.

Discharge temp > target discharge temp, exp. valve will open.
Discharge temp < target discharge temp, exp. valve will close.

The target superheat (SH) will be 5°C ~ 7°C (9°F ~ 12.6°F) in cooling operation and 0°C (0°F) in heating operation. The discharge superheat always have to be larger than 10°C (18°F). Otherwise the unit will have liquid compression. (depends on compressor type)
3.14.5 Pressure Equalization Control

Outline

The pressure difference between both sides of the expansion valve works as an extra load when restarting the compressor. To limit the load on the compressor when restarting it and consequently limit the starting current, a pressure-equalization is performed after deactivating the compressor. Pressure equalization is achieved by opening the expansion valve to a certain level and then closing it again.

Details

As soon as the compressor is stopped due to an OFF command, the expansion valve valve is controlled as following.

Fig.: Pressure equalization control graph in cooling mode

<table>
<thead>
<tr>
<th>Event</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF command by remote controller, mode change</td>
<td>24</td>
</tr>
<tr>
<td>Thermostat OFF</td>
<td>0</td>
</tr>
</tbody>
</table>
3.14.6 Control for Abnormally High Discharge Temperature

Outline
An abnormally high discharge temperature is an indication for a too high suction temperature or super-heat. Making adjustments to the expansion valve opening can solve this problem.

Details
Increasing the expansion valve opening will increase the refrigerant flow through the evaporator and decrease the superheat and the discharge temperature.

The unit is operating in the 'dropping zone' when all the following conditions are met:
- The compressor is operating
- The discharge temperature exceeds \(\mathbb{A} \) °C

The unit is operating in the 'reset zone' when one of the following conditions are met:
- The compressor has stopped
- The discharge temperature is below \(\mathbb{B} \) °C

\[\mathbb{A} = 104 \text{ - correction value (a)} \]
\[\mathbb{B} = 100 \text{ - correction value (a)} \]

For the correction value (a), refer to Page 45 *High Discharge Pipe Temperature Control.*

![Abnormal high discharge temperature control graph](image)

Fig.: Abnormal high discharge temperature control graph

In the dropping zone the unit will react as follows:
- Prohibit the discharge pipe temperature control
- When entering the dropping zone from the reset zone, it will add 20 pulses the expansion valve opening and set a 30 seconds 'opening adjustment timer'.
- Each time the opening adjustment timer reaches zero without leaving the dropping zone, 20 pulses will be added to the expansion valve opening and the opening adjustment timer will be reset.
Part 5
System Configuration

1. Installation Manual ...54
 1.1 Indoor Units ..54
 1.2 Outdoor Units ..64
2. System Configuration ...70
3. Instruction ...71
 3.1 Remote Controller ..71
 3.2 Cooling · QUATERNITY DRYING Operation73
 3.3 Heating Operation ..74
 3.4 AUTO Operation ...75
 3.5 FLASH STREAMER AIR PURIFYING · POWERFUL Operation ...76
 3.6 Adjusting Airflow Direction · Airflow Rate77
 3.7 COMFORT AIRFLOW · COOLING BREEZE Operation78
 3.8 TIMER Operation ...79
 3.9 COMFORT SLEEP Operation ..80
 3.10 SET UP · CHILD PROOF LOCK ...81
 3.11 INFORMATION DISPLAY ..82
1. Installation Manual

1.1 Indoor Units

Indoor Unit Installation Drawings

1. Removing and installing indoor unit.

- Installation method
 1) Using the △ marks (3 locations) on top of the indoor unit, attach the ◆ mounting plate hooks onto the indoor unit.
 2) Attach the tabs on the bottom frame onto the ◆ mounting plate. If the tabs are not hooked onto the plate, remove the front grille to hook them. (Check to see if the tabs are hooked securely.)

- Removal method
 Push up the mark part on the bottom of the front grille, discharge the tabs, and then remove the unit while lifting it up.

How to open the service lid

The service lid is removable.

- Opening the lid
 1) Remove the screws on the service lid.
 2) Hold the knobs on the service lid and pull forward.

Set the ◊ dry batteries AAA, LR03 (alkaline)

Before screwing the remote controller holder to the wall, make sure that control signals are properly received by indoor unit.

Wrap the insulation pipe with the finishing tape from bottom to top.

Cut thermal insulation pipe to an appropriate length and wrap it with tape, making sure that no gap is left in the insulation.

1-3/16" (30mm) or more from ceiling

1-15/16" (50mm) or more from walls (on both sides)

The securing tape is applied. Be sure to remove it before installation.

The mounting plate should be installed on a wall which can support the weight of the indoor unit.

Supporting plate

Use when opening the front panel and securing.

Supporting plate fixing screws 3/16" × 1" (M4 × 25mm) (9)

Remote controller holder

Fixing screws for remote controller holder 1/8" × 13/16"L (M3 × 20mm) (2)

Air filter

Deodorizing filter for streamer

Titanium apatite photocatalytic air-purifying filter

Front panel

Supporting plate

Cut thermal insulation pipe to an appropriate length and wrap it with tape, making sure that no gap is left in the insulation.

Wrap the insulation pipe with the finishing tape from bottom to top.

Cut thermal insulation pipe to an appropriate length and wrap it with tape, making sure that no gap is left in the insulation.

Wrap the insulation pipe with the finishing tape from bottom to top.

Cut thermal insulation pipe to an appropriate length and wrap it with tape, making sure that no gap is left in the insulation.

Wrap the insulation pipe with the finishing tape from bottom to top.

Cut thermal insulation pipe to an appropriate length and wrap it with tape, making sure that no gap is left in the insulation.

Wrap the insulation pipe with the finishing tape from bottom to top.

Cut thermal insulation pipe to an appropriate length and wrap it with tape, making sure that no gap is left in the insulation.

Wrap the insulation pipe with the finishing tape from bottom to top.
Installation Tips

1. Removing and installing front panel.
 - **Removal method**
 1) Open the front panel.
 2) Spread out the shaft hole on the left side and remove the rotating shaft.
 Spread out the shaft hole on the right side as well and remove the rotating shaft.
 - **Installation method**
 Insert the right and left rotating shafts on the front panel into the shaft holes one at a time and slowly close the panel.
 (Press on both sides of the front panel.)

2. Removing and installing the upper panel.
 - **Removal method**
 1) Remove the front panel and air filter.
 2) Hold and pull forward 2 tabs on both sides to disengage them, then disengage the center tab, and then lift up the upper panel.
 - **Installation method**
 1) Push in the upper panel along the guide on the top of the front grille and insert the 3 tabs into the slots on the front grille.
 2) Push the upper panel down until it clicks.
 3) Attach the air filter and front panel.

3. Removing and installing the front grille.
 - **Removal method**
 1) Remove the front panel, air filter and upper panel.
 2) Fully open the top and bottom horizontal louvers. (See Fig. 1)
 3) Remove the 3 screws in the front grille.
 4) Lift the hooks (3 locations) on the front grille with a flathead screwdriver to discharge the tab.
 (Look for the mark.) (See Fig. 2)
 5) Pull forward the front grille to remove.
 - **Installation method**
 1) Open the top louver fully and close the bottom louver fully.
 2) Store the gear case arm in the front grille. (See Fig. 3)
 3) Attach the front grille to the lower part of the unit.
 (Use caution not to pinch the horizontal louver.)
 4) Make sure to firmly latch the top hooks (3 locations).
 5) Tighten with the 3 front grille screws.
 6) Attach the upper panel, air filter and front panel.

Fig. 1
Horizontal louver
When removing or attaching the front grille, pay attention to open or close of each horizontal louver.

Fig. 2
Hooks on the front grille
Use caution to prevent the front grille from breaking.

CAUTION
Be sure to store the gear case arm before attaching the front grille.

Gear case arm

Downloaded from www.Manualslib.com manuals search engine
4. Installing the titanium apatite photocatalytic air-purifying filter and deodorizing filter for streamer.
 1) Open the front panel to pull out the air filter.
 2) Attach the ☞ titanium apatite photocatalytic air-purifying filter.
 3) Attach the ☞ deodorizing filter for streamer.
 4) Replace the air filter to its original position and close the front panel.

5. How to replace the drain plug and drain hose.
 • Replacing onto the left side
 1) Remove the insulation fixing screws on the right to remove the drain hose.
 2) Reattach the insulation fixing screw on the right as it was. *(Forgetting to attach this may cause water leakages.)*
 3) Remove the drain plug on the left side and attach it to the right side.
 4) Insert the drain hose and tighten with included ☞ indoor unit fixing screw.

6. How to set the different addresses.
 • When 2 indoor units are installed in 1 room, the 2 wireless remote controllers can be set for different addresses.
 1) Remove the front grille. (3 screws)
 2) Cut the address jumper “JA”. (See Fig. 1)

 3) Remove the remote controller lid and cut the address jumper “J4”. (See Fig. 2)
Indoor Unit Installation

1. Installing the mounting plate.
 - The mounting plate should be installed on a wall which can support the weight of the indoor unit.
 1) Temporarily secure the mounting plate to the wall, make sure that the panel is completely level, and mark the fixing points on the wall.
 2) Secure the mounting plate to the wall with screws.

 Recommended mounting plate retention spots and Dimensions

2. Boring a wall hole and installing wall embedded pipe.
 - For walls containing metal frame or metal board, be sure to use a wall embedded pipe and wall cover in the feed-through hole to prevent possible heat, electrical shock, or fire.
 - Be sure to caulk the gaps around the pipes with caulking material to prevent water leakage.
 1) Bore a feed-through hole of f2-9/16 inch (65mm) in the wall so it has a down slope toward the outside.
 2) Insert a wall pipe into the hole.
 3) Insert a wall cover into wall pipe.
 4) After completing refrigerant piping, wiring, and drain piping, caulk pipe hole gap with putty.

3. Installing inter-unit wiring.
 1) Open the front panel and remove the service lid.
 2) Pull out the inter-unit wiring from the back of the indoor unit to the front. It is easier to pull out if bending up the wire edge in advance.
 3) To connect the inter-unit wiring after hooking the unit onto the mounting plate, connect the inter-unit wiring as shown in the figure at right.
4. Laying piping and wiring.

- Lay the piping and drain hose according to the orientation of the piping coming out of the unit, as shown below.
- Make sure the drain hose is sloped downward.
- Wrap the piping and drain hose together using insulation tape.

4-1. Right-side, right-back, or right-bottom piping.

- **Right-side piping**
 - Cut out the piping-through hole.
 - Install with a downward slope.

- **Right-back piping**
 - Cut out the elbow.
 - Install with a downward slope.

- **Right-bottom piping**
 - Cut out the piping-through hole.

1) Wrap the piping and inter-unit wiring using insulation tape as shown in the piping bundle diagram.
2) Put all the pipes through the through-hole in the wall and hook the indoor unit onto the mounting plate.
3) Connect the pipes.

4-2. Left-side, left-back, or left-bottom piping.

- **Left-side piping**
 - Cut out the piping-through hole.
 - Refrigerant pipe

- **Left-back piping**
 - Refrigerant pipe

- **Left-bottom piping**
 - Refrigerant pipe

1) Replace the drain plug and drain hose. (How to replace the drain plug and drain hose.)
2) Pull in the refrigerant piping and lay it so that it matches the liquid and gas piping marked on the mounting plate.
3) Hook the indoor unit onto the mounting plate.
4) Connect the pipes. If it is difficult to do, remove the front panel first.
5) Wrap the insulation on the piping with insulation tape. If you are not repositioning the drain hose, store it in the location shown below.

4-3. Left-back piping.

1) Remove the front grille.
2) Secure the indoor unit with the indoor unit fixing screws.
3) Install the front grille.

When securing the indoor unit with screws:

- 3/16" x 1/2"L (M4 x 12mm)
Indoor Unit Installation

4-4. Wall embedded piping.
Follow the instructions given under

Left-side, left-back, or left-bottom piping
1) Insert the drain hose to this depth so it won’t be pulled out of the drain pipe.

⚠️ WARNING
Do not bundle the power code with a binding band, a twist tie or other method. This may cause heat, electric shock or fire.

5. Wiring

1) Strip the insulation from the wire (3/4 inch (20mm)).
2) Match wire colors with terminal numbers on indoor and outdoor unit’s terminal blocks and firmly screw wires to the corresponding terminals.
3) Connect the ground wires to the corresponding terminals.
4) Pull the wires to make sure that they are securely connected, and retain the wires with the binding band as shown in the illustration below.
5) In case of connecting to an adapter system. Run the remote controller cable and attach the S21. (Refer to 6. Connecting to the HA system.)
6) Shape the wires so that the service lid fits securely, then close service lid.

⚠️ WARNING
1) Do not use tapped wires, strand wires, extension cords or starburst connections, as they may cause overheating, electrical shock, or fire.
2) Do not use locally purchased electrical parts inside the product. (Do not branch the power for the drain pump, etc., from the terminal block.) Doing so may cause electric shock or fire.
3) When carrying out wiring connection, take care not to pull at the conduit.
6. Connecting to the HA system.

1) Remove the front grille. (3 screws)
2) Remove the decelerator assembly parts.
 (1 screw)
2-1) Remove the decelerator assembly part screws. (See Fig. 1)
2-2) Remove the decelerator assembly part connector. Remove by pressing on the tabs on the bottom of the connector.
 (See the tab position diagram 1)
3) Remove the electric parts box.
 (1 screw, 2 tabs)
3-1) Remove the electric parts box fixing screw.
3-2) Pull the electric parts box toward you and disengage Tab 2.
4) Remove the electric parts box cover.
 (3 tabs) (Refer to Fig. 2)
 4-1) Disengage Tab 3.
 4-2) Pull up the electric parts box cover slowly, disengage Tab 4, slide up, and disengage Tab 5.
5) Insert the connection cord into the HA connector “S21.”
6) Lay the connection cord as shown in Fig. 3.
7) Replace the electric parts box cover and electric parts box as they were.
8) Attach the decelerator assembly part along with the guide rail. (Refer to Fig. 2)
9) Install the front grille.
Indoor Unit Installation

7. Drain piping.
 1) Connect the drain hose, as described right.

 2) Remove the air filters and pour some water into the drain pan to check the water flows smoothly.

 3) When drain hose requires extension, obtain an extension hose commercially available. Be sure to thermally insulate the indoor section of the extension hose.

 4) When connecting a rigid polyvinyl chloride pipe (nominal diameter 1/2 inch (13mm) directly with embedded piping work, use any commercially available drain socket (nominal diameter 1/2 inch (13mm)) as a joint.

8. Improving installation strength.
 • We recommend screwing the indoor unit onto a mounting plate in order to improve the installation strength.
 1) Remove the front grille.
 2) Screw in the indoor unit with fixing screws.
 3) Attach the front grille.
Refrigerant Piping Work

1. Flaring the pipe end.
 1) Cut the pipe end with a pipe cutter.
 2) Remove burrs with the cut surface facing downward so that the chips do not enter the pipe.
 3) Put the flare nut on the pipe.
 4) Flare the pipe.
 5) Check that the flaring is properly made.

 WARNING
 1) Do not use mineral oil on flared part.
 2) Prevent mineral oil from getting into the system as this would reduce the lifetime of the unit.
 3) Never use piping which has been used for previous installations. Only use parts which are delivered with the unit.
 4) Never install a drier to this R410A unit in order to guarantee its lifetime.
 5) The drying material may dissolve and damage the syestrial system.
 6) Incomplete flaring may cause refrigerant gas leakage.

2. Refrigerant piping

 CAUTION
 1) Use the flare nut fixed to the main unit. (To prevent cracking of the flare nut by age deterioration.)
 2) To prevent gas leakage, apply refrigeration oil only to the inner surface of the flare. (Use refrigeration oil for R410A.)
 3) Use torque wrenches when tightening the flare nuts to prevent damage to the flare nuts and gas leakage.

 2-1. Caution on piping handling.
 1) Protect the open end of the pipe against dust and moisture.
 2) All pipe bends should be as gentle as possible. Use a pipe bender for bending.

 2-2. Selection of copper and heat insulation materials.
 - When using commercial copper pipes and fittings, observe the following:
 1) Insulation material: Polyethylene foam
 Heat transfer rate: 0.041 to 0.052W/mK (0.024 to 0.030 Btu/h·ft·°F (0.035 to 0.045 kcal/m²·°C))
 Refrigerant gas pipe’s surface temperature reaches 230°F (110°C) max.
 Choose heat insulation materials that will withstand this temperature.
 2) Be sure to insulate both the gas and liquid piping and to provide insulation dimensions as below.

<table>
<thead>
<tr>
<th>Minimum bend radius</th>
<th>Gas pipe thermal insulation</th>
<th>Liquid pipe thermal insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.D. 3/8 inch (9.5mm)</td>
<td>0.472-0.590 inch (12-15mm)</td>
<td>0.315-0.393 inch (8-10mm)</td>
</tr>
<tr>
<td>1-3/16 inch (30mm) or more</td>
<td>Thickness 0.393 inch (10mm) Min.</td>
<td></td>
</tr>
</tbody>
</table>

3) Use separate thermal insulation pipes for gas and liquid refrigerant pipes.
Trial Operation and Testing

1. Trial operation and testing.

1-1. Measure the supply voltage and make sure that it falls in the specified range.

1-2. Trial operation should be carried out in either cooling or heating mode.

- In cooling mode, select the lowest programmable temperature; in heating mode, select the highest programmable temperature.
 1) Trial operation may be disabled in either mode depending on the room temperature.
 Use the remote controller for trial operation as described below.
 2) After trial operation is complete, set the temperature to a normal level 26°C to 28°C (78°F to 82°F) in cooling mode, 20°C to 24°C (68°F to 75°F) in heating mode.
 3) For protection, the system disables restart operation for 3 minutes after it is turned off.

1-3. Operate the unit in accordance with the operation manual to check that it operates normally.

- Even when the air conditioner is not operating, it consumes some electric power. If the customer is not going to use the unit soon after it is installed, turn off the breaker to avoid wasting electricity.

<table>
<thead>
<tr>
<th>Trial operation from remote controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Hold the "CLOCK button" for 5 seconds.</td>
</tr>
<tr>
<td>(The matrix display will appear on the remote controller.)</td>
</tr>
<tr>
<td>2) Display " " on the matrix display of the remote controller and press the "CLOCK button".</td>
</tr>
<tr>
<td>3) " " will be displayed and the unit will enter test run mode.</td>
</tr>
<tr>
<td>4) Press the button for test run mode.</td>
</tr>
<tr>
<td>* Test run mode will stop automatically after around 30 minutes.</td>
</tr>
<tr>
<td>Press the ON/OFF button to force the test-run to stop.</td>
</tr>
</tbody>
</table>

2. Test items.

<table>
<thead>
<tr>
<th>Test items</th>
<th>Symptom (diagnostic display on RC)</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor and outdoor units are installed properly on solid bases.</td>
<td>Fall, vibration, noise</td>
<td></td>
</tr>
<tr>
<td>Did you install the deodorizing filter for the streamer and the titanium</td>
<td>Noise, water leakage</td>
<td></td>
</tr>
<tr>
<td>apatite photocatalytic air-purifying filter?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have you performed a gas leak test?</td>
<td>Incomplete cooling/heating function</td>
<td></td>
</tr>
<tr>
<td>No refrigerant gas leaks.</td>
<td>Incomplete cooling/heating function</td>
<td></td>
</tr>
<tr>
<td>Refrigerant gas and liquid pipes and indoor drain hose extension are</td>
<td>Water leakage</td>
<td></td>
</tr>
<tr>
<td>thermally insulated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draining line is properly installed.</td>
<td>Water leakage</td>
<td></td>
</tr>
<tr>
<td>Does the drain hose produce abnormal noise (perking sound) when using</td>
<td>Use of separately sold air cut drain plug</td>
<td></td>
</tr>
<tr>
<td>the ventilation fan or others?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System is properly ground to earth.</td>
<td>Electrical leakage</td>
<td></td>
</tr>
<tr>
<td>The specified wires are used for inter-unit wiring connections.</td>
<td>Inoperative or burn damage</td>
<td></td>
</tr>
<tr>
<td>Indoor or outdoor unit’s air intake or exhaust has clear path of air.</td>
<td>Incomplete cooling/heating function</td>
<td></td>
</tr>
<tr>
<td>Stop valves are opened.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor unit properly receives remote controller commands.</td>
<td>Inoperative</td>
<td></td>
</tr>
<tr>
<td>Did you check the address setting?</td>
<td>Inoperative</td>
<td></td>
</tr>
</tbody>
</table>
1.2 Outdoor Units

Outdoor Unit Installation Drawings

- Wrap the insulation pipe with the finishing tape from bottom to top.
- In sites with poor drainage, use block bases for outdoor unit. Adjust foot height until the unit is leveled. Otherwise, water leakage or pooling of water may occur.
- Adjust foot height until the unit is leveled. Otherwise, water leakage or pooling of water may occur.
- Where there is a danger of the unit falling, use foot bolts, or wires.

Stop valve cover
- How to remove the stop valve cover:
 - Remove the screw on the stop valve cover.
 - Slide the lid downward to remove it.
- How to attach the stop valve cover:
 - Insert the upper part of the stop valve cover into the outdoor unit to install.
 - Tighten the screws.

Allow space for piping and electrical servicing.
- Allow 11-13/16 inch (300mm) of work space below the ceiling surface.

Max. allowable length

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas pipe</td>
<td>30ft (10m)</td>
</tr>
<tr>
<td>Liquid pipe</td>
<td>26ft (8m)</td>
</tr>
</tbody>
</table>

No refrigerant needs to be added if the piping does not exceed the maximum length.

Max. allowable height

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas pipe</td>
<td>22-5/8 (574)</td>
</tr>
<tr>
<td>Liquid pipe</td>
<td>12-1/4 (311)</td>
</tr>
</tbody>
</table>

Unit: inch (mm)

26ft (8m) 32ft (10m)

Max. allowable length

Max. allowable height

Gas pipe O.D. 3/8 inch (9.5mm)

Liquid pipe O.D. 1/4 inch (6.4mm)

No refrigerant needs to be added if the piping does not exceed the maximum length.
Outdoor Unit Installation (1)

1. Installing outdoor unit.
 1) When installing the outdoor unit, refer to “Precautions for Selecting the Location” and the “Outdoor Unit Installation Drawings”.
 2) If drain work is necessary, follow the procedures below.

2. Drain work (heat pump-models).
 1) Use drain plug for drainage.
 2) If the drain port is covered by a mounting base or floor surface, place additional foot bases of at least 1-1/4 inch (30mm) height under the outdoor unit’s feet.
 3) In cold areas, do not use a drain hose with the outdoor unit.
 (Otherwise, drain water may freeze, impairing heating performance.)

3. Flaring the pipe end.
 1) Cut the pipe end with a pipe cutter.
 2) Remove burrs with the cut surface facing downward so that the chips do not enter the pipe.
 3) Put the flare nut on the pipe.
 4) Flare the pipe.
 5) Check that the flaring is properly made.

WARNING

1) Do not use mineral oil on flared part.
2) Prevent mineral oil from getting into the system as this would reduce the lifetime of the units.
3) Never use piping which has been used for previous installations. Only use parts which are delivered with the unit.
4) Never install a drier to this R410A unit in order to guarantee its lifetime.
5) The drying material may dissolve and damage the system.
6) Incomplete flaring may cause refrigerant gas leakage.

4. Refrigerant piping.

CAUTION

1) Use the flare nut fixed to the main unit to prevent cracking of the flare nut by aged deterioration.
2) To prevent gas leakage, apply refrigeration oil only to the inner surface of the flare. Use refrigeration oil for R410A.
3) Use torque wrenches when tightening the flare nuts to prevent damage to the flare nuts and gas leakage.

Align the centers of both flares and tighten the flare nuts 3 or 4 turns by hand. Then tighten them fully with the torque wrenches.

<table>
<thead>
<tr>
<th>Flare nut tightening torque</th>
<th>Valve cap tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas side</td>
<td>Gas side</td>
</tr>
<tr>
<td>3/8 inch (9.5mm)</td>
<td>3/8 inch (9.5mm)</td>
</tr>
<tr>
<td>24.1-29.4ft • lbf (32.7-39.9N • m)</td>
<td>15.9-20.2ft • lbf (21.6-27.4N • m)</td>
</tr>
<tr>
<td>Liquid side</td>
<td>Liquid side</td>
</tr>
<tr>
<td>1/4 inch (6.4mm)</td>
<td>1/4 inch (6.4mm)</td>
</tr>
<tr>
<td>10.4-12.7ft • lbf (14.2-17.2N • m)</td>
<td>15.9-20.2ft • lbf (21.6-27.4N • m)</td>
</tr>
</tbody>
</table>

Service port cap tightening torque: 7.9-10.8ft • lbf (10.8-14.7N • m)
5. Purging air and checking gas leakage.
 • When piping work is completed, it is necessary to purge the air and check for gas leakage.

WARNING
1) Do not mix any substance other than the specified refrigerant (R410A) into the refrigeration cycle.
2) When refrigerant gas leaks occur, ventilate the room as soon and as much as possible.
3) R410A, as well as other refrigerants, should always be recovered and never be released directly into the environment.
4) Use a vacuum pump for R410A exclusively. Using the same vacuum pump for different refrigerants may damage the vacuum pump or the unit.

• If using additional refrigerant, perform air purging from the refrigerant pipes and indoor unit using a vacuum pump, then charge additional refrigerant.
• Use a hexagonal wrench (3/16 inch (4mm)) to operate the stop valve rod.
• All refrigerant pipe joints should be tightened with a torque wrench at the specified tightening torque.

1) Connect projection side of charging hose (which comes from gauge manifold) to gas stop valve's service port.

2) Fully open gauge manifold’s low-pressure valve (Lo) and completely close its high-pressure valve (Hi). (High-pressure valve subsequently requires no operation.)

3) Do vacuum pumping and make sure that the compound pressure gauge reads 500 Microns. (The vacuum pump should run for at least 10 min.)

4) Close gauge manifold's low-pressure valve (Lo) and stop vacuum pump. (Keep this state for 20 minutes to make sure that the compound pressure gauge pointer does not swing back.)*1

5) Remove valve caps from liquid stop valve and gas stop valve.

6) Turn the liquid stop valve's rod 90 degrees counterclockwise with a hexagonal wrench to open valve. Close it after 5 seconds, and check for gas leakage. Using soapy water, check for gas leakage from indoor unit's flare and outdoor unit's flare and valve rods. After the check is complete, wipe all soapy water off.

7) Disconnect charging hose from gas stop valve's service port, then fully open liquid and gas stop valves. (Do not attempt to turn valve rod beyond its stop.)

8) Tighten valve caps and service port cap for the liquid and gas stop valves with a torque wrench at the specified torques.

*1. If the compound pressure gauge pointer swings back, refrigerant may have water content or a loose pipe joint may exists. Check all pipe joints and retighten nuts as needed, then repeat steps 2) through 4).
Outdoor Unit Installation (3)

6. Refilling the refrigerant.
 Check the type of refrigerant to be used on the machine nameplate.
 Precautions when adding R410A
 Fill from the liquid pipe in liquid form.
 It is a mixed refrigerant, so adding it in gas form may cause the
 refrigerant composition to change, preventing normal operation.
 1) Before filling, check whether the cylinder has a siphon attached or not.
 (It should have something like “liquid filling siphon attached” displayed on it.)
 • Be sure to use the R410A tools to ensure pressure and to prevent foreign objects entering.

7. Refrigerant piping work.
 7-1 Cautions on pipe handling.
 1) Protect the open end of the pipe against dust and moisture.
 2) All pipe bends should be as gentle as possible. Use a pipe bender for bending.
 7-2 Selection of copper and heat insulation materials.
 When using commercial copper pipes and fittings, observe the following:
 1) Insulation material: Polyethylene foam
 Heat transfer rate: 0.041 to 0.052W/mK / 0.035-0.045kcal/mh°C (0.024-0.030Btu/ft²°F)
 Refrigerant gas pipe’s surface temperature reaches 110°C (230°F) max.
 Choose heat insulation materials that will withstand this temperature.
 2) Be sure to insulate both the gas and liquid piping and to provide insulation dimensions as below.

Gas side	Liquid side	Gas pipe thermal insulation	Liquid pipe thermal insulation
O.D. 3/8inch (9.5mm)	O.D. 1/4inch (6.4mm)	0.0472-0.359inch (12-15mm)	0.315-0.359inch (8-10mm)
Minimum bend radius		Thickness 0.393inch (10mm) Min.	
1-3/16inch (30mm) or more			
Thickness 0.031inch (0.8mm) (C1220T-O)			

Piping bundle diagram

[Diagram]

3) Use separate thermal insulation pipes for gas and liquid refrigerant pipes.

Pump Down Operation

In order to protect the environment, be sure to pump down when relocating or disposing of the unit.
 1) Remove the valve caps from liquid stop valve and gas stop valve.
 2) Carry out forced cooling operation.
 3) After 5 to 10 minutes, close the liquid stop valve with a
 hexagonal wrench.
 4) After 2 to 3 minutes, close the gas stop valve and stop
 forced cooling operation.

How to force cooling operation mode
 ■ Using the indoor unit operation/stop button
 Press the indoor unit operation/stop button for at least 5 seconds. (Operation will start.)
 • Forced cooling operation will stop automatically after around 15 minutes.
 To force a test run to stop, press the indoor unit operation/stop button.

⚠️ CAUTION ⚠️

After closing the liquid stop valve, close the gas stop valve within 3 minutes, then stop the forced operation.
Wiring (1)

WARNING

1) Do not use spliced wires, stranded wires, extension cords, or starburst connections, as they may cause overheating, electrical shock, or fire. Follow all Local, and State electrical codes.
2) Do not use locally purchased electrical parts inside the product. (Do not overload the circuit by adding drain pump or other electrical equipment to unit terminals.) Doing so may cause electric shock or fire.
3) Be sure to install a ground leak detector (One that can handle higher harmonics.) (This unit uses an inverter, which means that it must be used a ground leak detector capable of handling harmonics in order to prevent malfunctioning of the ground leak detector itself.)
4) Use an all-pole disconnection type breaker with at least 1/8 inch (3mm) between the contact point gaps.
5) The ground leakage circuit breaker must operate at 30mA or lower.
6) When carrying out wiring connection, take care not to pull at the conduit.

<Work before wiring>

A protection plate is fixed for protection from the high-voltage section.
Before starting wiring work, remove the 2 screws and the protection plate.

<Method of mounting conduit>

1) Pass wires through the conduit and secure them with a lock nut.
2) By removing the 2 screws to remove the conduit mounting plate, you can work without the plate.
3) Secure the wire with a binding band to the conduit mounting plate.
 After completing the work, reattach the conduit mounting plate to its original position.

- Do not turn ON the safety breaker until all work is completed.

<Wiring procedure>

1) Strip the insulation from the wire (3/4 inch (20mm)).
2) Connect the connection wires between the indoor and outdoor units so that the terminal numbers match.
3) After completing wiring, fix the protection plate to its original position.

WARNING

When the protection plate is removed, do not turn ON the safety breaker.
1. Trial operation and testing.
 - Measure the supply voltage and make sure that it falls in the specified range.
 - See “Test Run and Final Check” in the installation manual that came with the indoor unit for details on how to perform the test run and what to check for.

2. Test items.

<table>
<thead>
<tr>
<th>Test items</th>
<th>Symptom (diagnostic display on RC)</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor unit is installed properly on a solid base.</td>
<td>Fall, vibration, noise</td>
<td></td>
</tr>
<tr>
<td>No refrigerant gas.</td>
<td>Incomplete cooling/heating function</td>
<td></td>
</tr>
<tr>
<td>Refrigerant gas and liquid pipes and indoor drain hose extension are thermally insulated.</td>
<td>Water leakage</td>
<td></td>
</tr>
<tr>
<td>Draining line is properly installed.</td>
<td>Water leakage</td>
<td></td>
</tr>
<tr>
<td>Contact and check with the user whether the outdoor unit requires drainage work.</td>
<td>Drainage instillation from the bottom hole of the outdoor unit.</td>
<td></td>
</tr>
<tr>
<td>System is properly ground to earth.</td>
<td>Electrical leakage</td>
<td></td>
</tr>
<tr>
<td>The specified wires are used for interconnecting wire connections.</td>
<td>Inoperative or burn damage</td>
<td></td>
</tr>
<tr>
<td>Outdoor unit's air intake or exhaust has clear path of air. Stop valves are opened.</td>
<td>Incomplete cooling/heating function</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION (1)

In case using stranded wires is unavoidable for some reason, make sure to install the round crimp-style terminals on the tip.

Place the round crimp-style terminals on the wires up to the covered part and secure in place.

<Ground terminal installation>
1) Use the following method when installing a single core wire.

2) Use the following method when installing the round crimp-style terminal.

CAUTION (2)

When connecting the connection wires to the terminal board using a single core wire, be sure to perform curling. Problems with the work may cause heat and fires.

3) Pull the wire and make sure that it does not disconnect. Then fix the wire in place with a wire stop.
2. System Configuration

After the installation and test operation of the room air conditioner have been completed, it should be operated and handled as described below. Every user would like to know the correct method of operation of the room air conditioner, to check if it is capable of cooling (or heating) well, and to know the most beneficial method of using it.

In order to meet this expectation of the users, giving sufficient explanations has been proven to reduce about 80% of the callback requests for servicing. However good the installation work is and however good the functions are, the customer may blame either the room air conditioner or its installation work because of improper operation. The installation work and handing over of the unit can only be considered to have been completed when its operation has been explained to the user without using technical terms but giving full knowledge of the equipment.
3. Instruction

3.1 Remote Controller

Name of Parts

Remote Controller: ARC447A3

Transmitter / Receiver
- To use the remote controller, aim the transmitter at the indoor unit. If there is anything to block signals between the unit and the remote controller, such as a curtain, the unit will not operate.
- The maximum distance for communication is about 23ft. (7 m)

DISPLAY (LCD)
- It displays the current settings. (In this illustration, each section is shown with all its displays ON for the purpose of explanation.)
- The protection sheet is on the display to protect against scratch. Remove it before use.

ON/OFF button
- Stops operation selected with the direct operation button. Another press will restart the same operation.

INFORMATION button
- Displays the indoor temperature and humidity and the outdoor temperature.

COUNTDOWN OFF TIMER button
- Sets time to stop. [Page 15]

TEMPERATURE adjustment buttons
- It changes the temperature setting.

DIRECT operation button
- AUTO button [Page 15]
- HEATING button [Page 11]
- QUATERNITY DRYING button [Page 10]
- COOLING button [Page 10]

HUMIDITY buttons
- It changes the humidity setting.

POWERFUL button
- Makes cooling or heating more powerful. (CANCELED in 20 minutes.) [Page 13]

FLASH STREAMER AIR PURIFYING button
- Cleans the room air. [Page 13]
Open the lid

COOLING BREEZE button
- COOLING BREEZE operation.

FAN setting button
- It selects the airflow rate setting.

SWING button
- Adjusts air direction.

SELECT button
- It changes the TIMER and COMFORT SLEEP operation and SET UP.

CHILD LOCK button

COMFORT SLEEP button
- Controls the room temperature to support comfort sleep and pleasant wake-up.

SET UP button
- Sets the unit operation and remote controller display according to your preference.

CANCEL button

RESET button
- Cleaning indicator reset.

CLOCK button
- Sets the present time.

TIMER Setting button
- Sets the time for timer-on or timer-off.
3.2 Cooling · QUATERNITY DRYING Operation

COOLING QUATERNITY DRYING Operation

COOLING operation

To lower temperature

Press

• The multi-monitor lamp of the unit will turn on GREEN.

To lower temperature and humidity

Press

• The multi-monitor lamp of the unit will turn on YELLOW.
* It is recommended to switch to COOLING operation if you want to lower temperature preferentially during DRY COOLING operation.

QUATERNITY DRYING operation

To lower humidity

Press

• The multi-monitor lamp of the unit will turn on YELLOW.

To stop operation

Press

• The multi-monitor lamp of the unit will go off.

To change the temperature or humidity setting

<table>
<thead>
<tr>
<th>COOLING</th>
<th>DRY COOLING</th>
<th>DRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>18°C - 32°C (64°F - 90°F)</td>
<td>-3°C (-5°F) - STD</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

- Note on ON / OFF button
 • Pressing [] will start the same operation as the last time.

- Note on COOLING operation
 • This air conditioner cools the room by blowing the hot air in the room outside, so if the outside temperature is high, performance drops.

- Note on DRY COOLING
 • Pressing the humidity button down in COOLING mode set the unit to DRY COOLING.
 • Removes more humidity than the normal COOLING operation. It is recommended, however, to set temperature slightly lower than the room temperature to lower humidity because this operation mode does not heat air supplementary.

- Note on QUATERNITY DRYING operation
 • Removes humidity with less lowering of the room temperature by heating air supplementary.
 • The operation mode change from COOLING to QUATERNITY DRYING may raise humidity temporarily.
3.3 Heating Operation

HEATING Operation

To raise temperature

Press .

• The multi-monitor lamp of the unit will turn on RED.

To stop operation

Press .

• The multi-monitor lamp of the unit will go off.

To change the temperature

<table>
<thead>
<tr>
<th>HEATING</th>
<th>10°C - 30°C (50°F - 86°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTI-MONITOR</td>
<td>RED</td>
</tr>
</tbody>
</table>
3.4 AUTO Operation

AUTO Operation

After pressing the AUTO button, the air conditioner will operate according to room conditions in an automatic mode.

Press AUTO.

- HEATING: The multi-monitor lamp of the unit will turn on RED.
- COOLING: The multi-monitor lamp of the unit will turn on GREEN.
- The color of the multi-monitor lamp changes according to the actual operations.
- When the AUTO button is pressed, the color according to the operation selected by the air conditioner will light up.

■ To change the temperature setting

18°C - 30°C (64°F - 86°F)

■ To stop operation

Press C/OFF.

- The multi-monitor lamp of the unit will go off.

NOTE
■ Note on AUTO operation
- In AUTO operation, the system selects an appropriate operation mode (COOLING or HEATING) based on the room temperature at the start of the operation.
- The system automatically reselects setting at a regular interval to bring the room temperature to user setting level.
- If you do not like AUTO operation, you can manually select the operation mode and setting you like.
3.5 FLASH STREAMER AIR PURIFYING · POWERFUL Operation

FLASH STREAMER AIR PURIFYING · POWERFUL Operation

The absorption power of the Titanium apatite photocatalytic air-purifying filter and air supply filter and the resolving power of the streamer discharge reduce bad odors and viruses, cleaning the room air.

Press CLEAN.

(Can be used together with heating or cooling, or on its own.)

- Changes every time the button is pressed. (Use instead of FAN operation.)

- The multi-monitor lamp of the unit will turn on WHITE.
 (This will illuminate white for the first 2 seconds of operation of the air conditioner.)

ATTENTION

- Temperature and humidity cannot be changed during FLASH STREAMER AIR PURIFYING operation only.

POWERFUL operation quickly maximizes the cooling (heating) effect in any operation mode.

Press during operation.

- POWERFUL operation ends in 20 minutes.

- POWERFUL COOLING: The multi-monitor lamp of the unit will turn on GREEN.

- POWERFUL HEATING: The multi-monitor lamp of the unit will turn on RED.

■ To cancel POWERFUL operation

Press again.

- The operation mode goes back to the previous one. The multi-monitor lamp on the unit also goes back to the previous color.

NOTE

■ Note on FLASH STREAMER AIR PURIFYING operation
 - The streamer discharge energy and Titanium apatite photocatalytic air-purifying filter clean the air in the room.

■ What is streamer discharge?
 - It generates high-speed electron with high oxidizing power in the unit to resolve odor and harmful gas.
 - (It is safe because the high-speed electron is generated and goes away inside the unit.)
 - The streamer discharge fizzes, but this is not a malfunction.

■ Note on POWERFUL operation
 - Can be used for COOLING, DRY COOLING and HEATING. (Cannot be used while the unit is not running.)
 - Pressing during COOLING, DRY COOLING changes the operation mode to POWERFUL COOLING.
 - Pressing during HEATING, change the operation mode to POWERFUL HEATING.
 - The operation noise is slightly louder during POWERFUL operation.
3.6 Adjusting Airflow Direction · Airflow Rate

ADJUSTING AIRFLOW DIRECTION · AIRFLOW RATE

More comfortable airflow is provided with airflow direction and airflow rate adjustment.

- To change vertical and horizontal airflow directions
 Press () or () during operation.
 (In case of vertical direction) • The airflow direction indication will display.
 • The horizontal and vertical louvers respectively move vertically and horizontally automatically.

- If you want to fix airflow direction
 Press () or () again.

- To use 3-D AIRFLOW
 Press () and then () during operation.
 • The vertical and horizontal airflow direction indications will display.
 • The horizontal and vertical louvers move alternately.

- To cancel 3-D AIRFLOW
 Press () or () again.

- To change the airflow rate
 Press () during operation. (Refer to table.)
 • COOLING or HEATING with “” or other weak airflow rate may not cool or heat the room sufficiently.
 • Indoor unit quiet operation
 When the airflow is set to “”, the noise from the indoor unit will become quieter.

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>Airflow rate setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUATERNITY DRYING</td>
<td>A</td>
</tr>
<tr>
<td>DRY COOLING</td>
<td>A</td>
</tr>
<tr>
<td>AUTO / COOLING</td>
<td>A</td>
</tr>
<tr>
<td>HEATING</td>
<td>A</td>
</tr>
<tr>
<td>FLASH STREAMER AIR PURIFYING</td>
<td>A</td>
</tr>
</tbody>
</table>

Five levels of airflow rate setting from () to () plus “A” “B” are available.

NOTE
• If the unit is operated with the horizontal louvers pointed down and stopped in COOLING, QUATERNITY DRYING, or DRY COOLING operation, the louvers will move automatically after about one hour. (This to prevent condensation from forming on them.)

ATTENTION
• Be sure to use the remote controller to adjust the airflow direction. Manual operation of the louvers may cause it to work improperly.

Note on Adjusting the vertical airflow direction
• The movable area for the horizontal louver is different depending on the operation mode.

Note on 3-D AIRFLOW
• Using 3-D AIRFLOW circulates cold air, which tends to be collected at the bottom of the room, and hot air, which tends to be collected near the ceiling, throughout the room, preventing areas of cold and hot from developing.
3.7 COMFORT AIRFLOW · COOLING BREEZE Operation

COMFORT AIRFLOW · COOLING BREEZE Operation

- COMFORT AIRFLOW operation
 Press ().

- COMFORT AIRFLOW MODE operation
 - The airflow direction and airflow rate are adjusted so that the air from the unit does not blow directly on the occupants of the room.
 - < COOLING/DRYING > The flap will go up.
 - < HEATING > The flap will go down.
 - The airflow rate is set to “AUTO”.

- COOLING BREEZE operation
 Press ().

- COOLING BREEZE operation
 - COOLING BREEZE operation is for COOLING, QUATERNITY DRYING and FLASH STREAMER AIR PURIFYING operation.

- To change the airflow rate
 Press () during operation. (Refer to table.)
 - COOLING or HEATING with “” or other weak airflow rate may not cool or heat the room sufficiently.
 - Indoor unit quiet operation
 When the air flow is set to “”, the noise from the indoor unit will become quieter.

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>Airflow rate setting</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QUATERNITY DRYING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRY COOLING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTO / COOLING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEATING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLASH STREAMER AIR PURIFYING</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 : COMFORT AIRFLOW MODE operation is possible.
 : COOLING BREEZE operation is possible.

Five levels of air flow rate setting from to plus ”” are available.

NOTE

- Note on COMFORT AIRFLOW MODE operation
 - The airflow direction is as figure.

- Note on COOLING BREEZE operation
 - The vertical movement of the horizontal louvers with “t/ f breeze” rhythm provides comfort air like natural breeze. The room temperature is felt cooler with cooling breeze.
3.8 TIMER Operation

TIMER Operation

Timer functions are useful for automatically switching the air conditioner on or off at night or in the morning. The timer operates only one time. Set the timer for each use.

- **COUNTDOWN OFF TIMER operation**
 - Set the time to stop.
 - Press \(\text{OFF TIMER} \).
 - The displayed time, which changes in 0.5 hour increments every time the button is pressed, is set. The time from 0.5 to 9.5 hours can be set.
 - TIMER lamp will light up.

- **ON/OFF TIMER operation**
 - Set time for ON TIMER or OFF TIMER.
 - Check that the clock is correct. If not, set the clock to the present time.
 - The present time display disappears when the time ON/OFF TIMER is reserved.

1. **Press \(\text{OFF} \) for OFF TIMER and press \(\text{ON} \) for ON TIMER.**

 - The temperature is displayed.
 - Displays the time.

2. **Press \(\text{SELECT} \) to set the time to be reserved.**

 - Pressing the button changes the time in 10 minutes. Holding the button makes the time change faster.

3. **Press \(\text{OFF} \) for OFF TIMER and press \(\text{ON} \) for ON TIMER.**

 - TIMER lamp will light up.

NOTE

- In the following cases, set the timer again.
 - After a breaker has turned OFF.
 - After a power failure.
 - After replacing batteries in the remote controller.

- **Note on TIMER operation**
 - Starting COUNTDOWN OFF TIMER and OFF TIMER causes the unit to automatically change the set temperature 1 hour later to prevent the room from becoming too cold or too hot. (Turns up 0.5°C (1°F) during COOLING or DRY COOLING and turns down 2°C (3.6°F) during heating.)
 - Reserving the ON TIMER will cause the unit to start running up to 1 hour before, in order to make sure the temperature reaches the temperature set on the remote controller by the set time.
 - When operating the unit via the COUNTDOWN OFF TIMER or OFF TIMER, the actual length of operation may vary from the time entered by the user.
 - Once you set ON/OFF TIMER, the time setting is kept in the memory. However, the COUNTDOWN OFF TIMER does not have this memory function.
 - (The memory is canceled when remote controller batteries are replaced.)
 - Cannot operate with POWERFUL or COMFORT SLEEP operation.

- **To cancel the TIMER operation**
 - Press \(\text{CANCEL} \).
 - The TIMER lamp will go off and the TIMER will be canceled.

- **To combine ON TIMER and OFF TIMER**
 - See theValley example for reserving in combination of COUNTDOWN OFF TIMER and ON TIMER as well as OFF TIMER and ON TIMER.

- **To cancel combined reservation**
 - Press \(\text{OFF} \) and then \(\text{CANCEL} \) to cancel the ON TIMER only.
 - Press \(\text{ON} \) and then \(\text{CANCEL} \) to cancel the OFF TIMER only.
 - Press \(\text{OFF} \) several times to reach 9.5 hours and then press it one more time to cancel the COUNTDOWN OFF TIMER only.

Example

- Present time: 23:00 (air conditioner is running)
- You want to have the unit run for 1 more hour and then turn back on at 7:00 am.

- Setting the COUNTDOWN OFF TIMER to \(\text{OFF} \) 1 hour later
- Setting the ON TIMER to \(\text{ON} \) at 7:00

- Setting the OFF TIMER to \(\text{OFF} \) at 0:00
- Setting the ON TIMER to \(\text{ON} \) at 14:00
3.9 COMFORT SLEEP Operation

COMFORT SLEEP Operation

Controlling the room temperature supports comfort sleep and pleasant wake up.
- Check that the clock is correct. If not, set the clock to the present time.
- The present time display disappears when the COMFORT SLEEP operation is set.

1. Press \(\text{O} \) during operation.

2. Press \(\triangle \) to set the time to wake up.

3. Press \(\text{O} \).

■ To cancel the comfort sleep operation
Press \(\text{CANCEL} \).

ATTENTION
- Make the room temperature comfortable to some extent before sleep.
- Recommended set temperature: COOLING: \(26 - 29 \^\circ\text{C} (79 - 84 ^\circ\text{F}) \)
 HEATING: \(20 - 25 \^\circ\text{C} (68 - 77 ^\circ\text{F}) \)

- Too low set temperature may cause you to get chilled while asleep.

NOTE
- Note on COMFORT SLEEP operation
 - Can be used for COOLING, DRY COOLING and HEATING.
 - Cannot be used with TIMER operation.
- How to use COMFORT SLEEP operation effectively
 - Starting COMFORT SLEEP operation lowers the set temperature by \(2 ^\circ\text{C} (3.6 ^\circ\text{F}) \) in 3 hours and starts raising it by \(1 ^\circ\text{C} (1.8 ^\circ\text{F}) \) 1 hour before the set time, offering V-curve temperature control. (See the right figure.)
 - Set the airflow direction so that the air from the unit does not directly blow on the occupants of the room.
3.10 SET UP · CHILD PROOF LOCK

SET UP · CHILD PROOF LOCK

- **SET UP**
 Sets the unit operation and remote controller display according to your preference.

1. **Press [SET UP]**.
 - The setup mode will be activated.

2. **The item will change every time [SET UP] is pressed.**
3. **The settings will change every time [SELECT] is pressed respectively.**
 - Direct the remote controller toward the main unit to make settings.

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELSIUS/FAHRENHEIT</td>
<td>[℃]</td>
<td>Switches the temperature between Celsius and Fahrenheit.</td>
</tr>
<tr>
<td>change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONITOR BRIGHTNESS</td>
<td>HIGH</td>
<td>Changes the brightness of the indoor unit display.</td>
</tr>
<tr>
<td></td>
<td>LOW OFF</td>
<td></td>
</tr>
<tr>
<td>BEEP volume</td>
<td>LOW OFF</td>
<td>Sets the receiving tone volume.</td>
</tr>
<tr>
<td></td>
<td>HIGH OFF</td>
<td></td>
</tr>
<tr>
<td>CONTRAST setting</td>
<td>1 to 16</td>
<td>Sets the grayscale for the remote controller LCD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selectable from contrast 1 to 16.</td>
</tr>
</tbody>
</table>

- **Setting complete**
 - The display on the remote control goes back to normal if no setting is made for 10 seconds.

- **CHILD PROOF LOCK**
 Restrict the remote controller operates to avoid misuse by children.

Press [CHILD LOCK] for about 2 seconds.
- “[CHILD LOCK]” is displayed.

- **To cancel CHILD PROOF LOCK**
 Press [CHILD LOCK] for about 2 seconds again.
3.11 INFORMATION DISPLAY

INFORMATION DISPLAY

Displays the room temperature and humidity and outdoor temperature.

Press INFO.

- After pressing INFO, point the remote controller at the air conditioner unit for 2 seconds.

NOTE

- The display changes every time INFO is pressed.

Note on INFORMATION DISPLAY

- The signal from the air conditioner is not being received properly if RCU ERR RETRY is displayed when you press INFO. Repeat, aiming the remote controller at the air conditioner.
- During operation, the outdoor temperature may sometimes be displayed higher than it actually is in COOLING or QUATERNITY DRYING mode or lower in HEATING mode (especially if frost has accumulated on the outdoor unit), due to the effects of the air blown from the outdoor unit or the temperature of the heat exchanger.
- The lowest indoor and outdoor temperature which can be displayed is -9°C (16°F). This will be displayed even if the actual temperature is lower. The highest temperature is 37°C (99°F). This will be displayed even if the actual temperature is higher.
- The indoor and outdoor temperatures and the humidity which are displayed are those near the sensors attached to the main air conditioner unit.
- The displayed temperature and humidity should only be taken as approximations, as they may be affected if there are objects around the sensors or due to direct sunlight, depending on where the air conditioner is installed.
Part 6

Service Diagnosis

1. Convenient Service Check Function .. 85
2. Troubleshooting .. 87
 2.1 Error Code Indication by Remote Controller ... 87
 2.2 Air conditioner does not run ... 88
 2.3 Air conditioner runs but does not cool or heat 91
 2.4 When operation starts, safety breaker trips .. 93
 2.5 Air conditioner makes a loud sound and vibrates 95
 2.6 Indoor Unit PCB Abnormality ... 96
 2.7 Peak-cut Control or Freeze-up Protection .. 97
 2.8 Fan Motor System (DC Motor) Abnormality 99
 2.9 Streamer Unit Abnormality ... 101
 2.10 Thermistor System Abnormality ... 103
 2.11 Front Panel Open / Close Abnormality .. 104
 2.12 Humidity Sensor Abnormality .. 105
 2.13 Signal Transmission Error (Indoor Unit - Outdoor Unit) 106
 2.14 Incompatible Power Supply between Indoor Unit and Outdoor Unit ... 108
 2.15 Outdoor Unit PCB Abnormality ... 109
 2.16 OL Activation (Compressor Overload) .. 110
 2.17 Compressor Lock .. 111
 2.18 DC Fan Lock .. 112
 2.19 Input Overcurrent Detection .. 113
 2.20 Four-Way Valve Abnormality .. 115
 2.21 Discharge Pipe Temperature Control ... 117
 2.22 High Pressure Control in Cooling .. 118
 2.23 Compressor Sensor System Abnormality .. 120
 2.24 Position Sensor Abnormality .. 121
 2.25 DC Voltage / DC Current Sensor Abnormality 123
 2.26 Thermistor System Abnormality ... 124
 2.27 Abnormal Temperature in Electrical Box ... 126
 2.28 Temperature Rise in Radiation Fin ... 128
 2.29 Output Overcurrent .. 130
 2.30 Insufficient Gas ... 132
 2.31 Over Voltage Protection / Low Voltage Protection 134
 2.32 Outdoor Unit PCB Abnormality or Communication Circuit Abnormality .. 135
 2.33 Signal Transmission Error on Outdoor Unit PCB 138
 2.34 Lights-out of Microcomputer Status Lamp 140
3. Check .. 141
 3.1 Thermistor Resistance Check ... 141
 3.2 Installation Condition Check ... 142
 3.3 Outdoor Fan System Check (DC Motor) .. 142
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 Power Supply Waveform Check</td>
<td>143</td>
</tr>
<tr>
<td>3.5 Main Circuit Electrolytic Capacitor Check</td>
<td>143</td>
</tr>
<tr>
<td>3.6 Refrigerant System Check</td>
<td>144</td>
</tr>
<tr>
<td>3.7 “Inverter Checker” Check</td>
<td>145</td>
</tr>
<tr>
<td>3.8 Power Transistor Check</td>
<td>146</td>
</tr>
<tr>
<td>3.9 Discharge Pressure Check</td>
<td>147</td>
</tr>
<tr>
<td>3.10 Electronic Expansion Valve Check</td>
<td>148</td>
</tr>
<tr>
<td>3.11 Indoor Unit PCB Output Check</td>
<td>149</td>
</tr>
<tr>
<td>3.12 Rotating Pulse Input on Outdoor Unit PCB Check</td>
<td>150</td>
</tr>
<tr>
<td>3.13 Humidity Sensor Check</td>
<td>151</td>
</tr>
<tr>
<td>3.14 Main Circuit Short Check</td>
<td>151</td>
</tr>
<tr>
<td>3.15 Four-Way Valve Performance Check</td>
<td>152</td>
</tr>
<tr>
<td>3.16 Solenoid Valve for Dehumidification Check</td>
<td>153</td>
</tr>
</tbody>
</table>
1. Convenient Service Check Function

- **Failure diagnosis with operation lamp**
 The operation lamp on the display of the indoor unit flashes when any of the following failures are detected:
 1. When a protection device of the indoor or outdoor unit is activated or when the thermistor malfunctions and the system does not work.
 2. When a signal transmission error occurs between the indoor and outdoor units.
 For detailed troubleshooting, refer to the following pages *Troubleshooting* (87–).

- **Failure diagnosis by remote controller**
 With the wireless remote controller supplied with the unit, or sold separately, error codes by failure diagnosis can be confirmed. (Press timer cancel button down for 5 seconds continuously.)

ARC447A series

1. Hold the timer cancel button down for 5 seconds, with the remote controller set toward the indoor unit.
2. The temperature display on the remote controller changes to the error code display and a long beep notifies this indication change.

<Note>
To cancel indication of error code, hold the timer cancel button down for 5 seconds. The code display also cancels itself if the button is not pressed for 1 minute.
- **Failure diagnosis by LED indication**
 The following failure diagnosis can be done by LED indication on the outdoor unit PCB.
 1. The outdoor unit has 2 green LED(LED A, LED5) on the PCB. Refer to page 11.
 The flashing green LED indicates "in order" condition.
 The turned ON or OFF LED indicates the failure related to the microcomputer.
- PCB is set upside down (with backside up).
- LED A can be visually inspected through an inspection slit.
2. Troubleshooting
2.1 Error Code Indication by Remote Controller

* Various cases may be possible.

<table>
<thead>
<tr>
<th>Code</th>
<th>Unit</th>
<th>Description</th>
<th>Reference page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Failure Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air conditioner does not run.</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air conditioner runs but does not get cooling (heating).</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When operation starts, safety breaker trips.</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air conditioner makes a loud noise and vibrates.</td>
<td>95</td>
</tr>
<tr>
<td>A1</td>
<td>Indoor</td>
<td>Indoor unit PCB abnormality</td>
<td>96</td>
</tr>
<tr>
<td>A5</td>
<td></td>
<td>Peak-cut control or freeze-up protection</td>
<td>97</td>
</tr>
<tr>
<td>A6</td>
<td></td>
<td>Fan motor system abnormality</td>
<td>99</td>
</tr>
<tr>
<td>AH</td>
<td></td>
<td>Streamer unit abnormality</td>
<td>101</td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td>Indoor heat exchanger thermistor abnormality</td>
<td>103</td>
</tr>
<tr>
<td>C7</td>
<td></td>
<td>Front panel open / close abnormality</td>
<td>104</td>
</tr>
<tr>
<td>C9</td>
<td></td>
<td>Room temperature thermistor abnormality</td>
<td>103</td>
</tr>
<tr>
<td>CC</td>
<td></td>
<td>Humidity sensor abnormality</td>
<td>105</td>
</tr>
<tr>
<td>E1</td>
<td>Outdoor</td>
<td>Outdoor unit PCB abnormality</td>
<td>109</td>
</tr>
<tr>
<td>E5</td>
<td></td>
<td>OL activation (compressor overload)</td>
<td>110</td>
</tr>
<tr>
<td>E6</td>
<td></td>
<td>Compressor lock</td>
<td>111</td>
</tr>
<tr>
<td>E7</td>
<td></td>
<td>DC fan lock</td>
<td>112</td>
</tr>
<tr>
<td>E8</td>
<td></td>
<td>Input overcurrent detection</td>
<td>113</td>
</tr>
<tr>
<td>EA</td>
<td></td>
<td>Four-way valve abnormality</td>
<td>115</td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td>Discharge pipe temperature control</td>
<td>117</td>
</tr>
<tr>
<td>F6</td>
<td></td>
<td>High pressure control in cooling</td>
<td>118</td>
</tr>
<tr>
<td>H0</td>
<td>Outdoor</td>
<td>Compressor sensor system abnormality</td>
<td>120</td>
</tr>
<tr>
<td>H6</td>
<td></td>
<td>Position sensor abnormality</td>
<td>121</td>
</tr>
<tr>
<td>H8</td>
<td></td>
<td>DC voltage / DC current sensor abnormality</td>
<td>123</td>
</tr>
<tr>
<td>H9</td>
<td></td>
<td>Outdoor air thermistor abnormality</td>
<td>124</td>
</tr>
<tr>
<td>J3</td>
<td></td>
<td>Discharge pipe thermistor abnormality</td>
<td>124</td>
</tr>
<tr>
<td>J6</td>
<td></td>
<td>Outdoor heat exchanger thermistor abnormality</td>
<td>124</td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>Abnormal temperature in electrical box</td>
<td>126</td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>Temperature rise in radiation fin</td>
<td>128</td>
</tr>
<tr>
<td>L6</td>
<td></td>
<td>Output overcurrent</td>
<td>130</td>
</tr>
<tr>
<td>P4</td>
<td></td>
<td>Radiation fin thermistor abnormality</td>
<td>124</td>
</tr>
<tr>
<td>U0</td>
<td>System</td>
<td>Insufficient gas</td>
<td>132</td>
</tr>
<tr>
<td>U2</td>
<td></td>
<td>Over voltage protection (OVP) / low voltage protection (LVP)</td>
<td>134</td>
</tr>
<tr>
<td>U4</td>
<td>Outdoor</td>
<td>Signal transmission error (indoor unit - outdoor unit)</td>
<td>106</td>
</tr>
<tr>
<td>U7</td>
<td>System</td>
<td>Outdoor unit PCB abnormality or communication circuit abnormality</td>
<td>135</td>
</tr>
<tr>
<td>U9</td>
<td></td>
<td>Signal transmission error on outdoor unit PCB</td>
<td>138</td>
</tr>
<tr>
<td>UR</td>
<td></td>
<td>Incompatible power supply between indoor unit and outdoor unit</td>
<td>108</td>
</tr>
<tr>
<td>–</td>
<td>System</td>
<td>Lights-out of microcomputer status lamp</td>
<td>140</td>
</tr>
</tbody>
</table>
2.2 Air conditioner does not run.

Method of Malfunction Detection

Malfunction Decision Conditions

Supposed Causes
- Power supply is OFF
- Improper power supply voltage
- Improper connection of wire
- Incorrect combination of indoor unit and outdoor unit
- Battery shortage of remote controller
- Invalid address setting
- Protection device works
 (dirty air filter, insufficient charge of refrigerant, overcharge of refrigerant, mixed air, etc.)
- Transmission error between indoor unit and outdoor unit
 (Defective PCB on outdoor unit)
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Caution

Is the power supply plug inserted into the outlet or the breaker for the power supply breaker ON?

- NO: Insert the power supply plug into the outlet. Turn on the breaker for the power supply.
- YES: Do the other electric appliances work?

- NO: Power failure?
 - NO: Is the supply voltage within the rated voltage ±10%?
 - NO: Connect properly to the power supply (check varistor and fuse).
 - YES: Ask electric power company.
 - YES: Has the fuse or the temperature fuse blown?
 - NO: Within 3 minutes after operation stopped?
 - NO: Is the wire connection and the wire size correct?
 - NO: Is the indoor unit compatible with the outdoor unit?
 - NO: Make sure that the infrared ray is radiated from remote controller (infrared ray checker*).
 - YES: Check the batteries in the remote controller.
 - YES: Does the address of the remote controller match with that of the indoor unit?
 - NO: Match the address.
 - YES: Continued to the next page

- YES: Operation will start 3 min.after.

*Infrared ray checker Part No.: 999120T

Continued to the next page
Go to troubleshooting.

Replace the outdoor unit PCB.

Go to LED diagnosis.
(investigate the symptoms) (R10107)
2.3 Air conditioner runs but does not cool or heat

Method of Malfunction Detection

<table>
<thead>
<tr>
<th>Malfunction Decision Conditions</th>
</tr>
</thead>
</table>

Supposed Causes

- Incorrect temperature setting
- Incorrect combination of indoor unit and outdoor unit
- Blocked air filter
- Insufficient power
- Refrigerant piping is too long
- Improper setting of piping length
- Defective field piping (squeezed, etc.)
Warning: When an air conditioner does not cool or heat the room, refrigerant leak is considered to be one of the reasons. Make sure that there is no gas leakage or breaks due to an over-tightened flare connection. Though the refrigerant used in an air conditioner is itself harmless, it can generate toxic gases when it leaks into a room and contacts flames, such as fan and other heaters, stoves, and ranges. In case of leakage, ventilate the room immediately.
2.4 When operation starts, safety breaker trips

Method of Malfunction Detection

Malfunction Decision Conditions

Supposed Causes

- Insufficient capacity of safety breaker
- Ground leakage breaker is too sensitive
- Not exclusive circuit
- The supply voltage is not within rated voltage ±10%.
- The size of connecting wire is too small (indoor power supply unit)
- Air is mixed with refrigerant (over filling)
- Damaged outdoor unit PCB (short circuit)
Troubleshooting

Check No.29
Refer to P.151

Replace the safety breaker to a specified one.

Increase the set value of the ground leakage current on the breaker (or replace the breaker).

Use an exclusive circuit.

Replace the wire to a specified one by referring to the electric wire distance described in the installation manual.

Contact with an electric power company.

Secure the required space.

Replace the wire to the specified one.

Remove the fan motors or the four-way valve coil and check.

Check No. 29
Short circuit check

Is it OK?

Is it OK?

Check No. 29
Short circuit check

Replace the outdoor unit PCB.

Replace the fan motor or the four-way valve coil.

Conduct vacuum drying, fill the refrigerant of specified volume.

· Air is mixed with refrigerant.
· Overfilling of refrigerant is supposed.
2.5 Air conditioner makes a loud sound and vibrates.

Method of Malfunction Detection

Malfunction Decision Conditions

Supposed Causes
- Piping length is too short
- Mounting wall is too thin
- Insufficient vibration prevention measures
- Deformation of the unit
- Improper quantity of refrigerant

Troubleshooting

⚠️ Caution
Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

[Installation]

- Does the wall vibrate or chatter?
 - YES: Modify installation conditions (reinforce the wall, install outdoor rubber cushion). Change installation place.
 - NO:
 - Does the installation plate vibrate or chatter?
 - YES: Put cushion material on the installation plate.
 - NO:
 - Is the piping secured and fixed?
 - YES: Secure it by using saddles and inserting a cushion material.
 - NO:
 - Does the fan contact with other parts?
 - YES: Correct them.
 - NO:
 - Does the piping contact with the casing?
 - YES: Correct by hand, or install piping weight.
 - NO:
 - Is a passing sound heard from the pressure reducing valve?
 - YES: Apply sound insulation sheets of putty.
 - NO:
 - Overfilling of refrigerant
 - Air mixed in
 - Flushing sound due to refrigerant shortage

[Unit]

- Does the fan contact with other parts?
 - YES:
 - NO:

(R10110)
2.6 Indoor Unit PCB Abnormality

Remote Controller Display

Method of Malfunction Detection

Check zero-cross detection from the power supply of the indoor unit

Malfunction Decision Conditions

When no zero-cross detection is performed in approximately 10 continuous seconds

Supposed Causes

- Defective indoor unit PCB (Faulty EEPROM data)
- Improper connector connection
- Defective indoor terminal board

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Check the model names of indoor and outdoor unit for correct combination

Check connector connection (Note)

Is it OK?

YES

Replace the indoor unit control PCB (A1P).

NO

Correct connection

Is the fault repeated?

YES

Replace the indoor unit control PCB (A1P).

NO

Complete

Note: Between terminal board and indoor unit control PCB.
2.7 Peak-cut Control or Freeze-up Protection

Remote Controller Display
- Method of Malfunction Detection
 - Peak-cut control (high pressure control)
 - During heating operation, the temperature detected by the indoor heat exchanger thermistor is used for the high pressure control (stop, outdoor fan stop, etc.).
 - Freeze-up protection control (operation halt) is activated during cooling operation according to the temperature detected by the indoor heat exchanger thermistor.
- Malfunction Decision Conditions
 - Peak-cut control
 - On heating operation, when indoor heat exchanger temperature is about 47°C (116.6°F) or more
 - Freeze-up protection
 - On cooling operation, indoor heat exchanger temperature is 0°C (32°F) or less
- Supposed Causes
 - System shutdown due to dirty indoor unit filter
 - System shutdown due to dirty indoor heat exchanger
 - System shutdown due to short circuit
 - Faulty detection due to defective indoor heat exchanger thermistor
 - Reheating dehumidification solenoid valve remains closed (on cooling operation)
 - Faulty detection due to defective indoor unit PCB
Troubleshooting

Check No.02
Refer to P.141

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Check air passages

Is there any short-circuit?

YES

Reserve the space for the air passages.

NO

Check the air filter for dirtiness

Is it very dirty?

YES (dirty)

Clean the air filter.

Not much

Check indoor unit heat exchanger for dirtiness

Is it very dirty?

YES (dirty)

Clean the heat exchanger.

Not much

Check No. 02
Indoor heat exchanger thermistor check

Does it conform to the thermistor characteristics chart?

NO

Replace the indoor heat exchanger thermistor.

YES (conforms)

Is the reheating dehumidification solenoid valve still closed?

YES

Replace the heat exchanger. (Replacement of the solenoid valve only is not possible.)

NO

Replace the indoor unit control PCB (A1P) (R10112)
2.8 Fan Motor System (DC Motor) Abnormality

<table>
<thead>
<tr>
<th>Remote Controller Display</th>
<th>Method of Malfunction Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The fan speed detected by the Hall IC during operation of high-pressure fan motor is used to determine abnormal fan operation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Malfunction Decision Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the detected fan speed is less than 50% of the HH tap under the maximum fan motor rpm demanded.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supposed Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- System shutdown due to rare short circuit inside the fan motor</td>
</tr>
<tr>
<td>- System shutdown due to breakage of wire inside the fan motor</td>
</tr>
<tr>
<td>- System shutdown due to breakage of the lead wire of fan motor</td>
</tr>
<tr>
<td>- Faulty detection due to defective indoor control PCB</td>
</tr>
</tbody>
</table>
Troubleshooting

Check No. 18
Refer to P. 149

Check the connector connection (S1).

* Connect the connector again for ensuring the connection.

Is it normal?

NO

Correct the connection.

YES

Foreign objects in or around the fan?

NO

Operate the fan.

Does it rotate smoothly?

NO

Replace the indoor fan motor.

YES

Turn off the power and turn power ON again.

Check No. 18
Check output of indoor unit control PCB (A1P)

Is motor power supply voltage generated? (DC 230V or more)

NO

Replace the indoor unit control PCB (A1P).

YES

Is motor control power voltage DC 15V generated?

NO

Replace the indoor unit control PCB (A1P).

YES

Is rotation number command voltage (DC 5V or more) generated?

NO

Replace the indoor unit control PCB (A1P).

YES

Replace the fan motor.

(R10113)
2.9 Streamer Unit Abnormality

<table>
<thead>
<tr>
<th>Method of Malfunction Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malfunction Decision Conditions</td>
</tr>
<tr>
<td>- If the error repeats 3 times in air purifying operation.</td>
</tr>
<tr>
<td>- Clearing condition: Continuous run for about 2 minutes (normal).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supposed Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Short circuit caused by the dust or water on the streamer unit electrode part.</td>
</tr>
<tr>
<td>- Scratch or crack in the harness for the streamer unit.</td>
</tr>
<tr>
<td>- Faulty streamer unit PCB</td>
</tr>
</tbody>
</table>
Troubleshooting

Caution Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

- Dust or drip of water is on the streamer unit?
 - YES: Clean the streamer unit.
 - NO: Does the multi-monitor LED blink about 1 minute after air purifying operation starts?
 - YES: Clean the streamer unit.
 - NO: Turn off the power supply (Turn off the breaker).

- Is the streamer unit installed securely?
 - NO: Install it securely.
 - YES: Check the connector connection (S52).
 - * Connect the connector again for ensuring the connection.

- Is it normal?
 - NO: Correct the connection.
 - YES: Is the limit switch normal?
 - NO: Replace the limit switch.
 - YES: Check the harness.

- Is it broken?
 - YES: Replace the harness.
 - NO: Replace the streamer unit PCB (ASP)

Note 1. Be careful not to break the electrode in cleaning.

Note 2. The electrode part contains high voltage so be sure to disconnect the power plug or turn of the breaker when you clean it. Touching it while it is connected results in electrical shock.
2.10 Thermistor System Abnormality

Remote Controller Display

Thermistor fault is detected based on the temperature determined by each thermistor

Method of Malfunction Detection

When power is supplied and the input of thermistor is 4.96 V or more or 0.04 V or less

* (for reference)

In case of 120 Ω (equivalent to 212°C / 413.6°F) or less or 1860 kΩ (equivalent to −50°C / −58°F) or more

Malfunction Decision Conditions

Supposed Causes

- Improper connector connection
- Defective thermistor
- Defective PCB for indoor unit control system
- Defective PCB for indoor humidity sensor

Troubleshooting Chart

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Check the connector connection.

Is it normal?

YES

NO

Correct the connection.

Check No. 02
Check the thermistor resistance

Check the connector connection.

Is it normal?

YES

NO

Replace the thermistor.
Replace the humidity sensor PCB (A4P).
Replace the indoor unit control PCB (A1P).

Check No. 02
Refer to P.141

¥ : Indoor heat exchanger thermistor
¥ : Room temperature thermistor

(R10120)
2.11 Front Panel Open / Close Abnormality

Remote
Controller
Display

Method of
Malfunction
Detection

Malfunction
Decision
Conditions

Supposed
Causes

Troubleshooting

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system will be shut down when the error occurs twice.</td>
<td>Malfunction of the reduction motor</td>
</tr>
<tr>
<td></td>
<td>Malfunction or deterioration of the front panel mechanism</td>
</tr>
<tr>
<td></td>
<td>Malfunction of the limit switch</td>
</tr>
</tbody>
</table>

Note: You cannot operate the unit by the remote controller when the front panel mechanism breaks down.

<To the dealers: temporary measure before repair>
1. Turn the breaker off.
2. Remove the front panel.
3. Turn the breaker on.
 (Wait until the initialization finishes.)
4. Operate the unit by the indoor unit ON/OFF switch.

Caution: Be sure to turn off power switch before connecting or disconnecting the connector, or parts damage may occur.
2.12 Humidity Sensor Abnormality

Remote Controller Display

Method of Malfunction Detection

Malfunction Decision Conditions

Supposed Causes

Troubleshooting

Check No. 27
Refer to P.151

Caution

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Check connector for proper connection

* Connect the connector again for ensuring the connection.

Is it OK?

NO

YES

Reconnect properly.

Check No. 27
Check input voltage of humidity sensor

Is it OK?

NO

YES

Replace the humidity sensor PCB (A4P).

Replace the indoor unit

(CC) : Humidity sensor
2.13 Signal Transmission Error (Indoor Unit - Outdoor Unit)

<table>
<thead>
<tr>
<th>Remote Controller Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Malfunction Detection</td>
</tr>
<tr>
<td>The data sent from the outdoor unit is checked for problem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Malfunction Decision Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the data sent from the outdoor unit can not be received without error, or when the disabled status of signal transmission continues for 15 seconds and the same status continuously repeats 3 times.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supposed Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defective outdoor unit PCB</td>
</tr>
<tr>
<td>Defective indoor unit PCB</td>
</tr>
<tr>
<td>Signal transmission error between indoor and outdoor unit due to improper wiring</td>
</tr>
<tr>
<td>Signal transmission error between indoor and outdoor unit due to breakage of relay wire (transmission wire)</td>
</tr>
</tbody>
</table>
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Check the relay wire between the indoor unit and the outdoor unit for color and number.

- **Is there any improper wiring?**
 - **YES**
 - Correct the relay wire between indoor and outdoor unit.
 - Voltage: 7 sec. 15 sec. Stop
 - Power on: Check during this period Fault determined
 - **NO**
 - Is there proper insulation between the interconnecting wire and the ground?
 - **Poor insulation**
 - Replace the relay wire between indoor and outdoor unit.
 - **Properly**
 - Does the distance of relay wire exceed 98 ft (30 m)?
 - **YES**
 - Distance is to be within the specified range (30 m or less).
 - **NO**
 - Check outdoor unit LED A

- **Does it blink?**
 - **NO**
 - Replace the outdoor unit PCB.
 - **YES**
 - Disconnect No. 3
 - Measure the voltage between 2 and 3 (Apply negative terminal to No. 2 in DC range)

- **Is the measured value 30 to 50 V?**
 - **YES**
 - Replace the indoor unit control PCB (A1P).
 - **NO** (below 30 V or above 50 V)
 - Replace the outdoor unit PCB.
2.14 Incompatible Power Supply between Indoor Unit and Outdoor Unit

Remote Controller Display

Method of Malfunction Detection
Check the incompatible power supply between the indoor unit and the outdoor unit by using signal transmission.

Method of Malfunction Detection
In case that the incorrect indoor model is connected to the incorrect outdoor model.

Supposed Causes
- Connected to wrong model
- Mounted improper indoor unit PCB
- Defective indoor unit PCB
- Mounted improper outdoor unit PCB or defective PCB

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Check model names of the indoor unit and the outdoor unit

Is the combination of the indoor unit and the outdoor unit correct?

YES

NO

Replace the indoor unit control PCB (A1P) (or replace the outdoor unit PCB).

Arrange for a correct combination.
2.15 Outdoor Unit PCB Abnormality

Remote Controller Display

Outdoor Unit LED Display

Method of Malfunction Detection

- Detect within the program of the microcomputer if the program is in good running order.
- Detect input of zero-cross signal.

Malfunction Decision Conditions

- When the program of the microcomputer is in bad running order.
- Zero-cross signal can not be detected.

Supposed Causes

- Out of control of microcomputer caused by external factors
 - Noise
 - Momentary fall of voltage
 - Momentary power loss
- Defective outdoor unit PCB
- Breakage of harness between PCBs

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

- Power on again
- Dose the LED A blink?
 - NO Replace the outdoor unit PCB.
 - YES Check to see that the machine is grounded.
- Grounded?
 - NO Carry out grounding work.
 - YES Is harness in good
 - YES Zero-cross signal is fault. Replace the outdoor unit PCB.
 - NO Replace harness.

(R9437)
2.16 OL Activation (Compressor Overload)

Remote Controller Display

Method of Malfunction Detection

A compressor overload is detected through compressor OL.

Malfunction Decision Conditions

- If the compressor OL is activated twice, the system will be shut down.
- The error counter will reset itself if this or any other error does not occur during the following 60-minute compressor running time (total time).
- The operating temperature condition is not specified.

Supposed Causes

- Refrigerant shortage
- Four-way valve malfunctioning
- Outdoor unit PCB defective
- Water mixed in the local piping
- Electronic expansion valve defective
- Stop valve defective

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

- **Check No.02** Refer to P.141
 - Discharge pipe thermistor disconnected?
 - NO
 - **Check No.02** Check the thermistors.
 - NG * Discharge pipe thermistor
 - Replace the discharge pipe thermistor.
 - OK
 - **Check No.17** Check the electronic expansion valve.
 - NG
 - Replace the electronic expansion valve coil or the valve itself.
 - OK
 - **Check No.31** Check the four-way valve.
 - NG
 - Replace the four-way valve coil or the valve itself. Replace the outdoor unit PCB.
 - OK
 - **Check No.12** Check the refrigerant line.
 - NG * Refrigerant shortage
 - Refer to the refrigerant line check procedure.
 - * Water mixed
 - Replace the outdoor unit PCB.
 - * Stop valve defective
 - Replace the outdoor unit PCB.

(R10122)
2.17 Compressor Lock

Remote Controller Display

Outdoor Unit LED Display

Method of Malfunction Detection
Judging from current waveform generated when high-frequency voltage is applied to the compressor.

Malfunction Decision Conditions
- The machine is shut down when the fault count reaches 16.
- Clear condition: Continuous operation for 11 min. (without fault)

Supposed Causes
- Compressor lock
- Disconnection of compressor harness

Troubleshooting

Check No. 14
Refer to P. 145

Be sure to turn off the power switch before connecting or disconnecting connector, or parts damage may occur.

Turn off the power supply, and disconnect U, V, and W harnesses

Check No. 14
Check the inverter by the inverter checker

* Inverter checker
Part No.: 1225477

Is it OK?

NO

Rectify the power supply or replace the outdoor unit PCB.

YES

Turn off the power supply, replace the harnesses, and restart the compressor after turning on the power supply again.

Does the compressor stop without running?

YES

Replace the compressor.

NO

Does the machine shut down after repeating stop of compressor several times?

NO

Check the electronic expansion valve.

YES

Replace the compressor.
2.18 DC Fan Lock

Remote Controller Display

Outdoor Unit LED Display

E7

A: 5 (-)

Method of Malfunction Detection

Identify the fan motor system fault based on the fan speed detected by Hall IC while the high pressure fan motor is running.

Malfunction Decision Conditions

- When the fan motor is running, the fan does not rotate for 60 seconds or more.
- Shut down when the error repeats 16 times
- Clear condition: The fan continuously rotates for 11 minutes without fault.

Supposed Causes

- Failure in fan motor
- Disconnection or improper connection of harness/connector between fan motor and PCB
- The fan does not rotate because it gets caught in foreign matter

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Check No. 23
Refer to P.150

Is the connector of the fan motor disconnected?

YES

Turn off the power supply, then insert the connector.

NO

Is there any foreign matter around the fan?

YES

Remove them.

NO

Try to operate

Check No. 23
Check the outdoor unit PCB for rpm command pulse input

Is the pulse input?

YES

Replace the outdoor unit PCB.

NO

Replace the outdoor fan motor.
2.19 Input Overcurrent Detection

<table>
<thead>
<tr>
<th>Remote Controller Display</th>
<th>E8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A: 5 (-)</td>
</tr>
</tbody>
</table>

Method of Malfunction Detection
Detect an input overcurrent by checking the inverter power consumption or the input current detected by CT with the compressor running.

Malfunction Decision Conditions
- When 14 A or more of inverter power consumption or CT input continues for 5 seconds.
- The compressor stops if the error occurs, and restarts automatically after 3 minutes standby.

Supposed Causes
- Overcurrent due to defective compressor
- Overcurrent due to defective power transistor
- Overcurrent due to defective electrolytic capacitor of inverter main circuit
- Overcurrent due to defective outdoor unit PCB
- Detection error due to defective outdoor unit PCB
- Overcurrent due to short circuit
Check No. 03
Refer to P.142

Restart and measure the input current.

Is the current value more than the set stop input current?

- **NO**
 - Replace the outdoor unit PCB.
- **YES**
 - **Check No. 11**
 - Main circuit electrolytic capacitor check

Check No. 11
Refer to P.143

Is there any LED turned off?

- **YES**
 - Rectify the power supply or replace the outdoor unit
- **NO**
 - Replace the electrolytic capacitor.

Check No. 14
Check the inverter by the inverter checker*

- **NO**
 - **Check No. 03**
 - Installation condition check
- **YES**
 - Turn off the power supply, replace the harnesses, and restart the compressor after turning on the power supply again.

*Input overcurrent may be caused by improper wiring inside the machine. If the machine stops due to input overcurrent after connecting or disconnecting wires to replaced part, check wiring for proper connection.

*Inverter checker
Part No.: 1225477

Caution
Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.
2.20 Four-Way Valve Abnormality

<table>
<thead>
<tr>
<th>Remote Controller Display</th>
<th>A ♂ 5 ♂ (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td></td>
</tr>
</tbody>
</table>

Method of Malfunction Detection

The room temperature thermistor, the indoor heat exchanger thermistor, the outdoor air thermistor, and the outdoor heat exchanger thermistor are checked to see if they function within their normal ranges in the operating mode.

Malfunction Decision Conditions

- When one of the following condition continues for 10 min, the compressor stops, and restarts automatically after 3 minutes standby.
 - **Cooling / drying**
 - (Room temperature – temperature of indoor heat exchanger) < \(-5^\circ C(23^\circ F)\)
 - **Heating**
 - (Temperature of indoor heat exchanger – room temperature) < \(-5^\circ C(23^\circ F)\)
 - Shut down when the error repeats twice
 - Clear condition: Continuous operation for 60 minutes.

Supposed Causes

- Improper connector connection
- Defective thermistor
- Defective outdoor unit PCB
- Defective coil or harness of four way valve
- Defective four way valve
- Insufficient gas
- Foreign substance mixed in refrigerant
Troubleshooting

Check No.02
Refer to P.141
Does the coil of four way valve get out of place (loosen)?
YES Rectify it.
NO

Check No.12
Refer to P.144
Is the harness disconnected from connector?
YES Reconnect properly.
NO

Check No.31
Refer to P.152
Four-way valve coil and harness conductivity check

Disconnect the harness from the connector. The resistance value is approx. 300~600 W.
YES Replace the four-way valve coil.
NO

Check No. 31
Four way valve output check
NG Replace the outdoor unit PCB.
OK

Each thermistor gets out of place?
Out of place
In place

Check No. 02
Thermistor check
NG Replace the thermistor.
OK

Check No. 12
Refrigerant system check
NG Refer to remedial actions related to refrigerant system check.
OK

- Refrigerant shortage
- Water mixed in
- Defective stop valve

Replace the four-way valve. (failure or stuck foreign material)

Caution
Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.
2.21 Discharge Pipe Temperature Control

Remote Controller Display

Outdoor Unit LED Display

Method of Malfunction Detection

Discharge pipe temperature control (stop, frequency attenuation, etc.) is executed based on the temperature detected by the discharge pipe thermistor.

Malfunction Decision Conditions

- The compressor stops when the discharge pipe temperature is 118°C (244.4°F) or more. (Fault condition is cleared when the discharge pipe temperature is below 85°C (185°F))
- Shut down when the error repeats 4 times
- Clear condition : Continuous operation for 60 minutes

Supposed Causes

- Insufficient gas
- Faulty operation of four way valve
- Defective discharge pipe thermistor
 (Defective heat exchanger thermistor or outdoor air thermistor)
- Defective outdoor unit PCB
- Water mixed in the field piping
- Defective electronic expansion valve
- Defective stop valve
- Defective indoor electronic expansion valve

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Check No.02 Refer to P.141

Check No.12 Refer to P.144

Check No.17 Refer to P.148
2.22 High Pressure Control in Cooling

Remote Controller Display

Outdoor Unit LED Display

Method of Malfunction Detection

During cooling, high pressure control (stop, frequency attenuation, etc.) is executed according to the temperature detected by the heat exchanger thermistor.

Malfunction Decision Conditions

During cooling, when the temperature detected by the heat exchanger thermistor is 63°C(145.4°F) or more. Fault condition is cleared when the temperature is below 45.5°C(113.9°F).

Supposed Causes

- Insufficient installation space
- Defective outdoor fan
- Defective electronic expansion valve
- Defective heat exchanger thermistor
- Defective outdoor unit PCB
- Defective stop valve
- Defective four-way valve for dehumidification
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Check No. 02
Refer to P. 141

Check No. 03
Refer to P. 142

Check No. 05
Refer to P. 142

Check No. 16
Refer to P. 147

Check No. 17
Refer to P. 148

Check No. 32
Refer to P. 153

Check installation space

Check installation condition check

Discharge pressure check

Electronic expansion valve check

Heat exchanger thermistor check

Installation condition check

Outdoor fan system check

Electronic expansion valve check

Heat exchanger thermistor check

OK

ND

OK

NG

OK

NG

OK

Check No. 02
Refer to P. 141

Check No. 03
Refer to P. 142

Check No. 05
Refer to P. 142

Check No. 16
Refer to P. 147

Check No. 17
Refer to P. 148

Check No. 32
Refer to P. 153

Judge

Replace the stop valve.

Replace the electronic expansion valve coil or the valve itself.
Replace the outdoor unit PCB.

Replace the outdoor heat exchanger thermistor.

Check No. 32

(R10125)
2.23 Compressor Sensor System Abnormality

<table>
<thead>
<tr>
<th>Remote Controller Display</th>
<th>Indoor Unit LED Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>H0</td>
<td>A: 5 (-)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of Malfunction Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault condition is identified by DC current which is detected before compressor startup.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Malfunction Decision Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ When the DC current before compressor startup is other than 0.5 to 4.5 V (detected by converting the sensor output to voltage), or the DC voltage is 50 V or less.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supposed Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Defective PCB</td>
</tr>
<tr>
<td>■ Harness disconnection / defective connection</td>
</tr>
</tbody>
</table>

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Replace the outdoor unit PCB.
2.24 Position Sensor Abnormality

Remote Controller Display

Outdoor Unit LED Display

Method of Malfunction Detection

Startup failure of the compressor is identified by rpm information of the compressor and by the electric component position detector.

Malfunction Decision Conditions

- When the compressor does not run for 15 seconds after receiving operation start command
- The machine shuts down if the fault occurs 16 times
- Clear condition: The compressor continuously runs for 11 minutes without fault

Supposed Causes

- Detection error due to disconnection of compressor harness
- Startup failure due to defective compressor
- Startup failure due to defective outdoor unit PCB
- Startup failure due to closed stop valve
- Input voltage fault
Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Check the power supply

Check No. 16
Discharge pressure check

Judge

Replace stop valve.

Check No. 29
Short circuit check

Is it OK?

NO

Replace
- Outdoor unit PCB
- Outdoor fan
- Four-way valve coil

YES

Check the voltage of electrolytic capacitor

DC270±30V?

NO

Replace the outdoor unit PCB.

YES

Is the harness of electric component or compressor connected properly?

NO

Connect properly.

YES

Turn off the power supply, and disconnect U, V, and W harnesses

Check No. 14
Check the inverter by the inverter checker*

Is there any LED

YES

Rectify the power supply or replace the outdoor unit PCB.

NO

Replace the compressor.

*Inverter checker
Part No.: 1225477
2.25 DC Voltage / DC Current Sensor Abnormality

<table>
<thead>
<tr>
<th>Remote Controller Display</th>
<th>H8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A: 5 (-)</td>
</tr>
</tbody>
</table>

Method of Malfunction Detection
DC voltage or DC current sensor system fault is identified based on the compressor operation frequency and the input current detected by the product of DC current and DC voltage.

Malfunction Decision Conditions
- When the compressor operation frequency is more than 62 Hz and when the input current is less than 0.25 A for 90 sec. continuously
 - The machine shuts down when the fault occurs 4 times.
 - Fault counter will be reset to zero if the machine does not stop during accumulated compressor operation time of 60 minutes after restored from fault conditions.

Supposed Causes
- Defective outdoor unit PCB

Troubleshooting

> **Caution** Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Replace the outdoor unit PCB.
2.26 Thermistor System Abnormality

<table>
<thead>
<tr>
<th>Remote Controller Display</th>
<th>P4, J3, J6, H9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A: 5 -</td>
</tr>
</tbody>
</table>

Method of Malfunction Detection

This fault is identified based on the thermistor input voltage to the microcomputer. A thermistor fault is identified based on the temperature detected by each thermistor.

Malfunction Decision Conditions

When power is supplied and the thermistor input is 4.98 V or more or when the thermistor input is 0.02 V or less for 5 seconds continuously

For J3, “Discharge pipe thermistor < heat exchanger thermistor” is taken into consideration to identify the fault.

Supposed Causes

- Improper connection of connector
- Defective thermistor
- Defective indoor unit PCB
- For J3, defective heat exchanger thermistor
 (Cooling: outdoor heat exchanger thermistor, heating: indoor heat exchanger thermistor)
Troubleshooting

Caution
Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

1. **Check No.02**
 Refer to P.141

 - Turn on the power supply again
 - Does the remote controller display the error code again?
 - NO: Reconnect properly.
 - YES: **Check No.02**
 - Thermistor resistance check
 - Is it OK?
 - NO: Replace the thermistor.
 - YES: **Check No.02**
 - Thermistor resistance check
 - Is it OK?
 - NO: Replace the thermistor.
 - YES: Replace the outdoor unit PCB.

\[R446\]

- \(R4\) : Radiation fin thermistor
- \(J3\) : Discharge pipe thermistor
- \(J6\) : Outdoor heat exchanger thermistor
- \(H3\) : Outdoor air thermistor
2.27 Abnormal Temperature in Electrical Box

Remote Controller Display

Outdoor Unit LED Display

Method of Malfunction Detection

Temperature rise in the electrical box is identified based on the temperature of the radiation fin detected by the fin thermistor with the compressor off.

Malfunction Decision Conditions

When the temperature of the radiation fin is 122°C(251.6°F) or more during the compressor off. (When the temperature drops below 113°C(235.4°F), fault condition is cleared.)

Supposed Causes

- Fin temperature rise due to defective outdoor fan
- Fin temperature rise due to short circuit
- Detection error due to defective fin thermistor
- Detection error due to improper connection of connector
- Detection error due to defective outdoor unit PCB
Troubleshooting

Caution

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

(Note on resetting power supply)

To reset the machine, power off status need to continue at least 30 sec.

Check No.02

Refer to P.141

WARNING

To cool down the electric components, the outdoor unit fan gets started when the radiation fin temperature rises above 120°C(248°F) and stops when the temperature falls below 113°C(235.4°F).

Check No.03

Refer to P.142

Check No.05

Refer to P.142

Check the radiation fin temperature

- Fin thermistor

- **Yes**
 - Does the temperature exceed the temperature to stop operation?
 - **No**
 - Replace the outdoor unit PCB.
 - **Yes**
 - Replace the fan motor. Rectify the connector and the fan motor lead wire. Replace the outdoor unit PCB.

- **No**
 - Replace the fin thermistor.

Check No.05

Outdoor fan system check

- **No**
 - Replace the fan motor. Rectify the connector and the fan motor lead wire. Replace the outdoor unit PCB.

- **Yes**
 - Radiation fin dirty?
 - Too dirty
 - Clean up the radiation fin.
 - Slightly dirty
 - Check No.03
 - Installation condition check
2.28 Temperature Rise in Radiation Fin

<table>
<thead>
<tr>
<th>Remote Controller Display</th>
<th>![Image]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

Method of Malfunction Detection
Temperature rise in the radiation fin is identified based on the temperature of the radiation fin detected by the fin thermistor with the compressor on.

Malfunction Decision Conditions
- The compressor stops when the radiation fin temperature is 86 °C (186.8°F) or more. Fault condition is cleared when the radiation fin temperature is below 67 °C (152.6°F).
- Shut down when the error repeats.

Supposed Causes
- Fin temperature rise due to defective outdoor fan
- Fin temperature rise due to short circuit
- Detection error due to defective fin thermistor
- Detection error due to improper connection of connector
- Detection error due to defective outdoor unit PCB
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

- **Check No.02**
 - Refer to P.141

- **Check No.03**
 - Refer to P.142

- **Check No.05**
 - Refer to P.142

Note: Refer to “1.3 Application of Silicon grease to a power transistor and a diode bridge” on P. 234.
2.29 Output Overcurrent

Remote Controller Display

Outdoor Unit LED Display

Method of Malfunction Detection
An output overcurrent is detected by checking the current that flows in the inverter DC section.

Malfunction Decision Conditions
- A position signal error occurs while the compressor is running.
- A speed error occurs while the compressor is running.
- The machine shuts down when the signal of output overcurrent is sent 8 times from the output overcurrent detection circuit to the microcomputer.
- Clear condition: The machine continuously runs for about 11 minutes (without fault).

Supposed Causes
- Overcurrent due to defective power transistor
- Overcurrent due to wrong internal wiring
- Overcurrent due to abnormal supply voltage
- Overcurrent due to defective PCB
- Detection error due to defective PCB
- Overcurrent due to closed stop valve
- Overcurrent due to defective compressor
- Overcurrent due to poor installation condition
- Defective indoor solenoid valve
Troubleshooting

Check No.03
Refer to P.142

Check No.14
Refer to P.145

Check No.15
Refer to P.146

Check No.16
Refer to P.147

Caution

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

*Output overcurrent may be caused by improper wiring inside the machine. If the machine stops due to output overcurrent after connecting or disconnecting wires to replace part, check wiring for proper connection.

Check No.03
Installation condition check

Is the stop valve fully opened?

YES

NO

Open the stop valve fully.

Check No.14
Check the inverter by the inverter checker*

Monitor the supply voltage, discharge and suction pressures, and other factors for a long term.

Possible causes:
- Momentary supply voltage drop
- Compressor motor overloaded
- Short circuit

Keep on using as it is.

(monitoring)

Check connectors and other fittings of electric components.

Check No.15
Check the power transistor

Is it OK?

NO

YES

Replace the outdoor unit PCB.

Turn off the power supply, replace the harnesses, and restart the compressor after turning on the power supply again.

Check the supply voltage

Rated voltage?

NO

YES

Rectify the power supply.

Short-circuit or breakage between compressor's coil

YES

NO

Replace the compressor.

Rectify the power supply or replace the outdoor unit PCB.

*Inverter checker
Part No.: 1225477

Check No.16
Discharge pressure check

Check No.03
Installation condition check

Is it OK?

Rated voltage?

YES

NO

Check the supply voltage

Short-circuit or breakage between compressor's coil

Replace the compressor.

Rectify the power supply.

Possible causes:
- Momentary supply voltage drop
- Compressor motor overloaded
- Short circuit

*Inverter checker
Part No.: 1225477

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

*Output overcurrent may be caused by improper wiring inside the machine. If the machine stops due to output overcurrent after connecting or disconnecting wires to replace part, check wiring for proper connection.

Check connectors and other fittings of electric components.

Repeat?

NO

YES

Turn off the power supply, and disconnect U, V, and W harnesses.

Check No.14
Check the inverter by the inverter checker*

Monitor the supply voltage, discharge and suction pressures, and other factors for a long term.

Possible causes:
- Momentary supply voltage drop
- Compressor motor overloaded
- Short circuit

Keep on using as it is.

(monitoring)

Check connectors and other fittings of electric components.

*Inverter checker
Part No.: 1225477

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

*Output overcurrent may be caused by improper wiring inside the machine. If the machine stops due to output overcurrent after connecting or disconnecting wires to replace part, check wiring for proper connection.

Check connectors and other fittings of electric components.

Repeat?

NO

YES

Turn off the power supply, and disconnect U, V, and W harnesses.

Check No.14
Check the inverter by the inverter checker*

Monitor the supply voltage, discharge and suction pressures, and other factors for a long term.

Possible causes:
- Momentary supply voltage drop
- Compressor motor overloaded
- Short circuit

Keep on using as it is.

(monitoring)

Check connectors and other fittings of electric components.

*Inverter checker
Part No.: 1225477

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

*Output overcurrent may be caused by improper wiring inside the machine. If the machine stops due to output overcurrent after connecting or disconnecting wires to replace part, check wiring for proper connection.

Check connectors and other fittings of electric components.
2.30 Insufficient Gas

Remote Controller Display

Outdoor Unit LED Display

Method of Malfunction Detection

- **Gas shortage detection I:**
 Gas shortage is detected by checking the input current value and the compressor running frequency. If the gas is short, the input current is smaller than the normal value.

- **Gas shortage detection III:**
 Gas shortage is detected by checking the difference between ambient temperature and heat exchanger temperature. If the gas is short, the difference is smaller than the normal value.

Malfunction Decision Conditions

- **Gas shortage detection I:** The following conditions continue for 7 minutes.
 - Input current \times input voltage $\leq 2800 / 256 \times$ output frequency -350 (W)
 - Output frequency > 54 (Hz)

- **Gas shortage detection III:** When the difference of the temperature is smaller than Δ, it is regarded as insufficient gas.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling room temperature $-$ indoor heat exchanger temperature</td>
<td>4.0°C (7.2°F)</td>
</tr>
<tr>
<td>Cooling outdoor heat exchanger temperature $-$ outdoor temperature</td>
<td>4.0°C (7.2°F)</td>
</tr>
<tr>
<td>Heating indoor heat exchanger temperature $-$ room temperature</td>
<td>4.0°C (7.2°F)</td>
</tr>
<tr>
<td>Heating outdoor temperature $-$ outdoor heat exchanger temperature</td>
<td>4.0°C (7.2°F)</td>
</tr>
</tbody>
</table>

If a gas shortage error takes place 4 times straight, the system will be shut down. The error counter will reset itself if this or any other error does not occur during the following 60-minute compressor running time (total time).

Supposed Causes

- Refrigerant shortage (refrigerant leakage)
- Refrigerant heat exchanger drift
- Poor compression performance of compressor
- Closed stop valve
- Defective electronic expansion valve
- Defective solenoid valve for dehumidifying
Troubleshooting

Check No.02
Refer to P.141

Check No.17
Refer to P.148

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Is the stop valve opened? NO → Open the stop valve.

YES → Check gas leakage.

Oil oozing at field pipe connections? YES → Repair flared portion of piping or replace square union.

NO → Oil oozing at internal piping?

YES → Compressor vibrates too much?

NO → Check the power transistor harness for looseness. Correct it as required. Replace cracked pipe if any.

YES → Check the piping for improper contact. Correct as required. Replace cracked pipe if any.

Replace the electronic expansion valve.

Replace the heat exchanger.

Replace with the specified quantity of refrigerant.

Does refrigerant heat exchange drift occur? YES → Replace the defective thermistor. (room temperature, outdoor air, indoor or outdoor heat exchanger thermistor)

NO → Thermistor check

YES → Replace the outdoor unit PCB

Is insufficient gas fault repeated? NO → Replace the compressor.

YES → Procedure complete.

Procedure complete.

(R9450)
2.31 Over Voltage Protection / Low Voltage Protection

Remote Controller Display

Outdoor Unit LED Display

- 5 (-)

Method of Malfunction Detection

Detect an abnormal increase or drop of voltage by the detection circuit or DC voltage detection circuit.

Malfunction Decision Conditions

- When an overcurrent signal is sent to the microcomputer from the overcurrent detection circuit, or the voltage detected by DC voltage detection circuit is less than 150 V and that voltage continues for about 0.1 sec.
- Shut down when the error repeats.
- Fault counter is reset when the machine continuously runs for 11 minutes without fault.

Supposed Causes

- Abnormal supply voltage, momentary power failure
- Defective overcurrent detector or defective DC voltage detection circuit
- Failure in PAM controlled parts
- Short circuit inside the fan motor winding

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

1. Check the supply voltage.

 If the supply voltage is as specified...
 - Yes: Rotate the fan by hand.
 - No: Correct the power supply.

2. Does the fan rotate smoothly?

 If the fan rotates smoothly...
 - Yes: Turn on the power again. System restarted?
 - Yes: Disturbance factors such as Noise, Power supply distortion.
 - No: Replace the outdoor unit PCB.
 - Repeat a couple of times.

 If the fan does not rotate smoothly...
 - No: Replace the fan motor and outdoor unit PCB.

(R9451)
2.32 Outdoor Unit PCB Abnormality or Communication Circuit Abnormality

<table>
<thead>
<tr>
<th>Remote Controller Display</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A: 5 -</td>
</tr>
</tbody>
</table>

Method of Malfunction Detection
Detect within the program of the microcomputer whether or not the program is in good running order.

Malfunction Decision Conditions
1. When the program of the microcomputer is in bad running order.
2. When indoor-outdoor unit signal transmission can not be performed for more than 15 seconds.
3. When zero-cross signal can not be detected for more than 10 seconds.

Supposed Causes
- Display disabled due to power supply fault
- Communication circuit fault in outdoor unit PCB
- Out of control of microcomputer caused by external factors
 - Noise
 - Momentary voltage drop
 - Momentary power loss
- Defective outdoor unit PCB
- Defective thermal fuse in outdoor terminal board
Troubleshooting

Caution

Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

Check indoor unit also, because a communication circuit fault may be caused by the problem related to the indoor unit.

1. **Check supply voltage**
 - Rated voltage? (NO)
 - Rectify the power supply. (YES)

2. **Check the varistor on the outdoor unit PCB**
 - Is it damaged? (YES)
 - Replace the varistor. (NO)

3. **Check the fuse on the outdoor unit PCB**
 - Does it have conductivity? (NO)
 - Replace the fuse. (YES)

4. **Check the thermal fuse on the terminal board**
 - Does it have conductivity? (NO)
 - Check the terminal board connecting wire for proper connection.
 - Firmly connected? (YES)
 - Replace the thermal fuse on the terminal board. (NO)
 - Reconnect properly. Replace the terminal board. Replace the thermal fuse on the terminal board.

5. **Check +5V and GND on the outdoor unit PCB**
 - Power on again
 - Wait more than 10 sec.
 - 5 V ≤ 0.5 V (NO)
 - Replace the outdoor unit PCB. (YES)

(Continued to the next page)

(R10127)
1

Check No.08
Power supply waveform check

Does LED A turn off?

YES

Check grounding

Grounded?

YES

Carry out grounding work.
The cause seems to be an external factor other than failure of the outdoor unit PCB. Investigate source of noise and take measures.

NO

Investigate the cause of disturbance and take remedial action.

NO

Turn off the power supply. Disconnect No. 3 terminal and turn on the power supply again.

Disturbance?

YES

Replace the outdoor unit PCB.

NO

Replace the indoor unit PCB. (R10128)

Check the wiring between indoor unit and outdoor unit.

Does LED A blink more than 10 times?

YES

NO

Check wrong wiring, insulation among wiring, insulation to ground

Is it OK?

NO

Reconnect the relay wire.

YES

Continued from the previous page

Check No.08
Refer to P.143
2.33 Signal Transmission Error on Outdoor Unit PCB

<table>
<thead>
<tr>
<th>Remote Controller Display</th>
<th>U7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A 5 (-)</td>
</tr>
</tbody>
</table>

Method of Malfunction Detection
Communication error between microcomputer mounted on the main body and inverter.

Malfunction Decision Conditions
- When the data sent from the microcomputer of the inverter cannot be received 15 times successively or for 15 sec, the machine shuts down.
- Fault counter is reset when the data from the microcomputer of the inverter can be successfully received.

Supposed Causes
- Defective outdoor unit PCB
- Disconnection or breakage of harness between PCBs
Troubleshooting

Caution
Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

1. Check blinking interval of LED 5
 - Is it 0.5 sec.? (same as LED A)
 - YES (0.5 sec. interval)
 - NO (0.2 sec. interval)
2. Check voltage between +5V and GND
 - 5 V±0.5 V
 - YES
 - NO Replace the outdoor unit PCB.
3. Power on again
 - Is the fault repeated?
 - YES Replace the outdoor unit PCB.
 - NO The cause seems to be an external factor other than failure of the outdoor unit PCB. Monitor in long term.

(R10129)
2.34 Lights-out of Microcomputer Status Lamp

Remote Controller Display

Outdoor Unit LED Display

Method of Malfunction Detection

Malfunction Decision Conditions

Supposed Causes

- Outdoor unit PCB has no power
- Power supply failure due to noise

Troubleshooting

*Be sure to turn off the power switch before connecting or disconnecting the connector, or parts damage may occur.

- Correct power supplied?
 - YES
 - NO

- LED A turned off?
 - YES
 - NO

- Voltage of 5 V applied between +5V and GND?
 - YES
 - NO

- LED 5 turned off?
 - YES
 - NO

- Voltage of 5 V applied between +5V and GND?
 - YES
 - NO

- LED A blink?
 - YES
 - NO

- LED 5 blink?
 - YES
 - NO

- Replace the outdoor unit PCB.
- Remove noises (from the power supply).
- Remove noises (from the power supply).
3. Check

3.1 Thermistor Resistance Check

Check No.02 Remove the connectors of the thermistors on the PCB, and measure the resistance of each thermistor using tester.

The relationship between normal temperature and resistance is shown in the graph and the table below.

<table>
<thead>
<tr>
<th>Temperature (°C / °F)</th>
<th>Thermistor Resistance (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−20 / −4</td>
<td>211.0</td>
</tr>
<tr>
<td>−15 / 5</td>
<td>150</td>
</tr>
<tr>
<td>−10 / 14</td>
<td>116.5</td>
</tr>
<tr>
<td>−5 / 23</td>
<td>88</td>
</tr>
<tr>
<td>0 / 32</td>
<td>67.2</td>
</tr>
<tr>
<td>5 / 41</td>
<td>51.9</td>
</tr>
<tr>
<td>10 / 50</td>
<td>40</td>
</tr>
<tr>
<td>15 / 59</td>
<td>31.8</td>
</tr>
<tr>
<td>20 / 68</td>
<td>25</td>
</tr>
<tr>
<td>25 / 77</td>
<td>20</td>
</tr>
<tr>
<td>30 / 86</td>
<td>16</td>
</tr>
<tr>
<td>35 / 95</td>
<td>13</td>
</tr>
<tr>
<td>40 / 104</td>
<td>10.6</td>
</tr>
<tr>
<td>45 / 113</td>
<td>8.7</td>
</tr>
<tr>
<td>50 / 122</td>
<td>7.2</td>
</tr>
</tbody>
</table>

For the models in which the thermistor is directly mounted on the PCB.
3.2 Installation Condition Check

Check No.03

Installation condition check

Check the allowable dimensions of the air suction and discharge area.

Abnormal

Change the position of the air discharge grille or the installation location.

Normal

Does the discharged air from other outdoor unit cause an increase of the suction air temperature?

YES

Change the position of the air discharge grille or the installation location.

NO

Is the heat exchanger very dirty?

YES

Clean the heat exchanger.

NO

Is the airflow blocked by obstacles or wind blowing in the opposite direction?

YES

Change the installation location or direction.

NO

Check the outside air temperature (temperature of air taken in by the outdoor unit). (The outside air temperature shall be 43°C(109°F) or lower.)

(R9460)

3.3 Outdoor Fan System Check (DC Motor)

Check No.05

Outdoor fan system check

Does the outdoor fan rotate?

YES

The outdoor fan system is OK

NO

Check the fan motor lead wire connector for secure connection

YES

To Check No.23

NO

Rectify.

(R9460)
3.4 Power Supply Waveform Check

Check No.08
Check the voltage waveform between power supply terminals on the terminal board for disturbance using oscillo-tester.
- Check to see if the power supply waveform is a sine wave (Fig.1).
- Check to see if there is waveform disturbance near the zero cross (sections circled in Fig.2)

![Fig.1](R1736) ![Fig.2](R1444)

3.5 Main Circuit Electrolytic Capacitor Check

Check No.11
- Do not touch the live parts within 10 minutes after the breaker is turned off.
- Even after that, when you touch the parts, check that there is no DC voltage with a tester.
- Check the conductivity with a tester. It is OK if the tester shows good conductivity when pins are replaced.

Set the tester to the resistance measuring range

If the pointer swings and returns, the electrolytic capacitor is OK.
If the pointer does not swing, or does not return, the electrolytic capacitor is out of order.
3.6 Refrigerant System Check

Check No.12

Refrigerant system check (blockage, gas leakage, insufficient gas are to be checked)

Models with discharge pipe thermistor

Is the discharge pipe thermistor disconnected from the holder?

YES Rectify.

NO

Is the temperature of suction pipe of four-way valve extremely high?

YES Replace the four-way valve.

NO

Gas leakage check Refer to the insufficient gas detection

Replace the gas. (R10130)
3.7 “Inverter Checker” Check

Check No.14

1. Characteristics
If abnormal stop occurs due to compressor startup failure or overcurrent output when using inverter unit, it is difficult to judge if it results from the compressor failure or other failure (control PCB, power transistor, etc.). The inverter analyzer makes it possible to judge the cause of trouble easily and securely. (Connect this analyzer as a quasi-compressor instead of compressor and check the output of inverter)

2. Operation Method
1) Be sure to turn the power off.
2) Install the inverter analyzer instead of a compressor.

Note: Make sure the charged voltage of the built-in smoothing electrolytic capacitor drops to 10 VDC or below before carrying out the service work.

3) Turn the power on and operate the air conditioner.

- How to activate the inverter test mode
1) Turn the power on.
2) Hold the “CLOCK” button for 5 seconds.
 (The matrix display will appear on the remote controller.)
3) Display “STANDBY” on the matrix display of the remote controller and press the “CLOCK” button.
4) “I” will be displayed.
5) Press the “CLEAN” button to start inverter test.

Reference
If the connector terminal of compressor is not a FASTON terminal (difficult to remove the wire on the terminal), it is possible to connect a wire available on site to the unit from output side of PCB. (Do not connect it to the compressor at the same time, otherwise it may result in incorrect detection.)

3) Turn the power on and operate the air conditioner.

- How to activate the inverter test mode
1) Turn the power on.
2) Hold the “CLOCK” button for 5 seconds.
 (The matrix display will appear on the remote controller.)
3) Display “STANDBY” on the matrix display of the remote controller and press the “CLOCK” button.
4) “I” will be displayed.
5) Press the “CLEAN” button to start inverter test.
3. Diagnose method (Diagnose can be made according to 6 LEDs lighting status as follows:)

(1) When all LEDs are lit uniformly, \(\rightarrow \) Compressor malfunction (to be replaced)
(2) When some of LEDs are not lit (LEDs are not lit or go off, etc.):
 - Check the individual power transistor. (Refer to check No.15)
 * When the power transistor and control PCB are integrated:
 \(\rightarrow \) Replace the control PCB.
 * When the power transistor can be checked individually:
 ↓ Check the resistance value. (Refer to check No.15)
 If NG: \(\rightarrow \) The power transistor may have a failure. (Replace the power transistor).
 If the power transistor is normal, check if there is any solder cracking on filter PCB.
 * If any solder cracking is found: \(\rightarrow \) Replace the filter PCB (or repair the soldered section).
 * If filter PCB is normal: \(\rightarrow \) Replace the control PCB.

Caution

① When the output frequency is low, the LED flashes slowly. As the frequency increases, the LED flashes quickly. (It looks like the LED is lit)
② If the operation is carried out with no load (the condition of the compressor is disconnected), some of units may stop operation with “CT system error” (due to no electric current) or “startup failure” (because the compressor does not turn). In this case, check if the LED is flashing during “operation” to “malfunction stop”. (Refer to the service manual of each air conditioner for checking whether the alarm LEDs for CT system, startup failure, etc. are provided or not.)
③ On completion of diagnose by this checker, be sure to re-crimp the FASTON terminal for resetting the system.
 (Otherwise, the terminal may be burned due to loosening.)

3.8 Power Transistor Check

Check No.15

- Do not touch the live parts within 10 min. after the breaker is turned off.
- Even after that, when you touch the parts, check to see that supply voltage of the power transistor is less than 50 V with a tester.
- Measure resistance at connector terminal on PCB or at the relay connector.

<table>
<thead>
<tr>
<th>(-) terminal of a tester</th>
<th>Power transistor (+)</th>
<th>UVW</th>
<th>Power transistor (−)</th>
<th>UVW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) terminal of a tester</td>
<td>UVW</td>
<td></td>
<td>Power transistor (+)</td>
<td>UVW</td>
</tr>
</tbody>
</table>

Resistance in OK

<table>
<thead>
<tr>
<th>Resistance in OK</th>
<th>Resistance in NG</th>
</tr>
</thead>
<tbody>
<tr>
<td>several kΩ~several MΩ</td>
<td>0 or ∞</td>
</tr>
</tbody>
</table>

Direction of crimp

This size is shortened by “crimp”.

FASTON terminal

(rs161)
3.9 Discharge Pressure Check

Check No.16

Discharge pressure check

- Is it high?
 - NO Replace the compressor.
 - YES
 - Is the stop valve open?
 - NO Open the stop valve.
 - YES
 - Is the connection pipe deformed?
 - YES Replace the field piping.
 - NO
 - Are the heat exchanger and air filter dirty?
 - YES Clean it.
 - NO Replace the compressor.

(R9683)
3.10 Electronic Expansion Valve Check

Check No.17

Check the electronic expansion valve (EV) as follows:

1. Check if the EV connector is properly inserted into the control PCB. Collate the number of EVs in the main body with those of the connector.
2. Check to see if clicking (latching sound) is heard from all of the EVs when turning on the power supply again after turning it off.
3. If there are EVs which do not click, disconnect the connectors of these EVs and check them for conductivity.

4. If there are no clicks (latching sounds) on all of the EVs in step 2, the outdoor PCB is defective.
5. For EVs for which conductivity is established in step 3, connect the coil that made the latching sound to the EV main body which did not make the sound, and test to see if the latching sound occurs.

If latching sound is heard, the outdoor unit PCB is defective.
If there is no latching sound, the EV main body is defective.

Note Latching sounds vary with different valves.
3.11 Indoor Unit PCB Output Check

Check No.18 <Control PCB (A1P)>
1. Check for proper connection.
2. Check supply voltage applied to the motor output (between No. 4 pin and No. 7 pin).
3. Check motor control voltage output (between No. 3 pin and No. 4 pin).
Check rpm command voltage output (between No. 2 pin and No. 4 pin).

S1

7 Motor supply voltage
6 Vacant pin
5 Vacant pin
4 P.OV(Reference electric potential)
3 Motor control voltage (DC15V)
2 RPM command voltage (DC~6.5V)
1 RPM command pulse input

(R4023)
3.12 Rotating Pulse Input on Outdoor Unit PCB Check

Check No.23 < For propeller fan motor>
Make sure voltage of 270 ± 30 V is applied.
1. Set power ON and operation OFF. Remove connector S70.
2. Check that the voltage between No. 4 pin and No.7 pin is 270 VDC.
3. Check that the control voltage between No. 3 pin and No. 4 pin is 15 VDC.
4. Check that the RPM command voltage between No. 2 pin and No. 4 pin is 5 VDC.
5. Set power OFF and operation OFF. Connect connector S70.
6. Check whether two pulses (0 - 15 V) are input at No. 1 pin and No. 4 pin when the fan motor is rotated 1 turn by hand.

Fuses are commonly used as follows. Refer to the corresponding circuit diagram.

<table>
<thead>
<tr>
<th>FU1</th>
<th>SW power supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>FU2</td>
<td>Four way valve</td>
</tr>
<tr>
<td></td>
<td>Outdoor fan</td>
</tr>
</tbody>
</table>

When FU2 is melted, check outdoor fan for proper function.
If NG in step 2 → Defective PCB → Replace the PCB.
If NG in step 4 → Defective Hall IC → Replace the DC fan motor.
If OK in both steps 2 and 4 → Replace the PCB.

Propeller fan motor: S70
3.13 Humidity Sensor Check

Check No.27

1. Check for proper connection.
2. Check sensor input level (*1).
3. Change ambient conditions (*2) and check that input level changes accordingly.

 *1 Input level varies depending on the sensor.

 *2 Changes in humidity, temperature, airflow rate. To do this, merely breathe on the sensor.

![Humidity sensor diagram](image)

3.14 Main Circuit Short Check

Check No.29

- Measure the resistance between pins at both ends of DB1.
- If the resistance is ∞ or less than 1 kΩ, the main circuit short.

<table>
<thead>
<tr>
<th>(-) terminal of the tester (in case of digital, (+) terminal)</th>
<th>(-)</th>
<th>(+)</th>
<th>(-)</th>
<th>(-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) terminal of the tester (in case of digital, (-) terminal)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
</tbody>
</table>

- Resistance in OK: several kΩ ~ several MΩ
 - (∞) (∞) (∞) (∞)

- Resistance in NG: 0 or ∞
 - 0 0 0 0

(R0023)
3.15 Four-Way Valve Performance Check

Check No.31

< Caution on resetting the power supply >
* Be sure to wait for 30 sec. or more after turning off the power supply.

Turn off the power and turn it on again.

S80 voltage at DC 0 V with outdoor unit on?

NO

Replace the outdoor unit PCB.

YES

Start the heating-mode run.

* Four-way valve coil
 Cooling / dry : No continuity
 Heating : Continuity

S80 voltage at DC 130-230 V for 3 sec. after compressor starts, and then at about DC 12 -15V after that? (Fig. 1)

NO

Replace the outdoor unit PCB.

YES

Disconnect the four-way valve coil from the connector and check the

Four-way valve coil resistance at 300 ~ 600 Ω?

NO

Replace the four-way valve coil.

YES

Replace the four-way valve.

(Fig. 1)
Voltage at S80
DC180-280V
DC12-15V

3 sec.

Compressor ON

(R9462)
3.16 Solenoid Valve for Dehumidification Check

Check No.32

Faulty criterion:
In dehumidification test operation mode, PCB is identified as a faulty when the solenoid valve does not turn on within 2 seconds after compressor start-up. (When reheating dehumidifying is not used, the operation mode is similar to cooling operation.)

Stop operation

The voltage of S43 is 0 V?

NO

Replace the indoor control PCB (A1P)

YES

Run dehumidification test operation

Wait 2 seconds after the compressor is on.

Is the voltage of S43 around 10 to 15 V?

NO

Replace the indoor control PCB (A1P).

YES

Remove solenoid valve connector from S43

Measure the resistance of solenoid valve.

Is it within the range of 10 to 60W?

NO

Replace the solenoid valve coil.

YES

Solenoid valve failure is suspected.

Faulty criterion:
In dehumidification test operation mode, PCB is identified as a faulty when the solenoid valve does not turn on within 2 seconds after compressor start-up. (When reheating dehumidifying is not used, the operation mode is similar to cooling operation.)
Part 7
Removal Procedure

1. Indoor Unit..156
 1.1 Removal of Air Filters / Front panel..156
 1.2 Removal of Upper Panel ...163
 1.3 Removal of Front Grille ..166
 1.4 Removal of Assembly of Open/Close Mechanism169
 1.5 Removal of Assembly of Reduction Motor ...171
 1.6 Removal of Electrical Box ..174
 1.7 Removal of PCB..179
 1.8 Removal of Dehumidifying Solenoid Valve Coil185
 1.9 Removal of Drain Hose ..186
 1.10 Removal of Swing Motor ..189
 1.11 Removal of Heat Exchanger ..190
 1.12 Removal of Propeller Fan / Fan Motor ..193
 1.13 Removal of Horizontal Blades / Vertical Blades196
 1.14 Removal of Streamer Unit ..199

2. Outdoor Unit..203
 2.1 How to Check the Service Monitor (LED A) ..203
 2.2 Removal of Propeller Fan / Fan Motor ..205
 2.3 Removal of Electrical Box ..210
 2.4 Removal of PCB ...214
 2.5 Removal of Sound Blanket ..218
 2.6 Removal of Thermistor Assembly ...220
 2.7 Removal of Reactor / Partition Plate ...222
 2.8 Removal of Four-Way Valve ..224
 2.9 Removal of the Expansion Valve ..226
 2.10 Removal of Compressor ...228
1. Indoor Unit
1.1 Removal of Air Filters / Front panel

Procedure Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 1. External appearance | ![Multi-colored indicator lamp](R10132) | - Multi-colored indicator lamp changes its color according to the operation mode.
- HEATING : Red
- COOLING : Green
- QUATERNITY DRYING/DRY
- COOLING : Yellow
- FLASH STREAMER AIR
- PURIFYING : White
- Remote controller is interactive communication type. |
| 2. Removal of the air filter | ![ON/OFF switch](R10133) | |
| 1 | Hold the front panel on both sides and lift it up. | ![Timer lamp](R10133) |
Step Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Keep the front panel open with the support plate.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Push the center part of the air filter up to undo the 2 hooks.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Remove the air filter toward yourself.</td>
<td></td>
</tr>
</tbody>
</table>

Support Points

- (R10134)
- (R10135)
- (R10136)

Step Procedure Points

- (R10134)
- (R10135)
- (R10136)
Step 5

The shapes of the right and left filters are different.

- Insert the filters along with the guide for easy installation.

Step 3: Remove the deodorizing filter for streamer

1. Pull the center knob to undo the hook.

2. Pull out the deodorizing filter for streamer toward yourself.
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Undo the 3 hooks on the longitudinal direction.</td>
<td>- In cleaning, keep the filter with the frame to prevent breaking it.</td>
</tr>
<tr>
<td>4</td>
<td>Slide the filter toward yourself to remove.</td>
<td></td>
</tr>
</tbody>
</table>

4. Removal of the streamer unit

| 1 | Pull down the streamer unit with holding the knob. | |

![Image of filter with hooks](R5631)

![Image of streamer unit being pulled down](R5632)

![Image of streamer unit with knob](R5633)
5. Removal of the titanium apatite photocatalytic air-purifying filter

1. Undo the projection of the frame of titanium apatite photocatalytic air-purifying filter and remove it.

- Insert the filters along with the guide for easy installation.

2. Undo the 4 hooks, open the frame, and remove the titanium apatite photocatalytic air-purifying filter.
6. Removal of the front panel

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open the front panel further than the stopping position.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Push the panel stoppers outward on both right and left sides to detach the rotary shafts from the holes.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Slide the rotary shaft on the left to the right and pull it out toward yourself.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Procedure</td>
<td>Points</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>4</td>
<td>Slide the rotary shaft on the right to the left and pull it out toward yourself.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Remove the front panel.</td>
<td></td>
</tr>
</tbody>
</table>

Indoor Unit SiUS04-921

162 Removal Procedure

Downloaded from www.Manualslib.com manuals search engine
1.2 Removal of Upper Panel

Procedure Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Removal of the service cover</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Remove the 1 screw (black) of the service cover.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Slide the service cover downward to undo the hook on the back side (see the figure below).</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>When assembling, catch the 2 hooks on the far side first, and close the cover.</td>
<td></td>
</tr>
</tbody>
</table>

![Service cover](R10141)

- **Shield plate**
- **Back side hook**
- **Hooks**
- **Service cover**
2. Removal of the upper panel

1. Release the 3 hooks of the upper panel.

2. In part A, pinch the upper hook, release the hook, and lift it up.

3. In part B, release the hook as in part A, and lift it up.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Removal of the upper panel</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Release the 3 hooks of the upper panel.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>In part A, pinch the upper hook, release the hook, and lift it up.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>In part B, release the hook as in part A, and lift it up.</td>
<td></td>
</tr>
</tbody>
</table>
Step Procedure Points

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 4 | In part C, lift the right and left sides to bend the upper panel and slightly pull toward yourself to remove. | ![Part C](R10144)
- When assembling, make sure to catch the far side hooks. |
| 5 | Pull the upper panel toward yourself to remove. | ![Hooks](R5652) |
1.3 Removal of Front Grille

Procedure Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 1. | Removal of the front grille | ■ If the hooks are hard to be undone, use a flat screwdriver.
■ You can check the position by the projection when it is hard to see. |
<p>| 1 | Remove the 3 screws and undo the upper 3 hooks of the front grille. | |
| 2 | Open the horizontal blade (large) fully for preventing the blade from getting caught in pulling the front grille out. | |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Slide the front grille toward yourself to remove.</td>
<td></td>
</tr>
</tbody>
</table>

2. How to install the front grille

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points on installing</th>
</tr>
</thead>
</table>
| 1 | When assembling the front grille, fit the 4 lower hooks and push in until a click is heard. | **When assembling, make sure that the horizontal blade (large) does not come inside.**

3. Features of the gear case

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 1 | There is a gear assembly for opening and closing the front panel. | **There is no mark for fitting the gear.**

(R5657) (R5658) (R5659) (R5660)
Step Procedure Points

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Check that the arm in the gear case of the front grille is in the stored position.</td>
<td>- The gear case is fixed to the front grille. When assembling the front grille, make sure the arm is stored.</td>
</tr>
<tr>
<td>3</td>
<td>Installation structure of the gear case.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Movement of the arm.</td>
<td></td>
</tr>
</tbody>
</table>
1.4 Removal of Assembly of Open/Close Mechanism

Procedure Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 1. | Removal of the open/close mechanism (right) | Preparation
- Remove the front grille according to "Removal of the Front Grille".
- When assembling, catch the lower hook first. |
| 1 | Remove the 1 screw of the open/close mechanism (right). |

2 Remove the lower hook while straightening the open / close mechanism (right) and remove it.

3 Pull out the open/close mechanism (right) from the shaft.
2. Removal of the open/close mechanism (left)

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pull out the shaft from the open/close mechanism (left).</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Remove the 2 screws of the open/close mechanism (left).</td>
<td>Service part is obtained as an assembly kit.</td>
</tr>
<tr>
<td>3</td>
<td>Remove the open/close mechanism (left).</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of open/close mechanism removal](R5667)

![Diagram of screw removal](R5668)

![Diagram of mechanism removal](R5669)
1.5 Removal of Assembly of Reduction Motor

Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

Step | **Procedure** | **Points**
--- | --- | ---
1 | Removal of the assembly of the reduction motor | ![Image](image1)
 - Disconnect the connector for reduction motor [S91] (S51).
 - The figure above shows the hook on the connector for the assembly of reduction motor.
 - When touching the electrical parts like the limit switch, be sure to conduct the work after discharging static electricity of the human body as it can cause problems with the PCB.
2 | Removal of the reduction motor | ![Image](image2)
 - Remove the 1 screw.

Step | **Procedure** |
--- | ---
1 | Remove the 1 screw. | ![Image](image3)
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Cut the clamp.</td>
</tr>
<tr>
<td>3</td>
<td>Slide the cover to the right to undo the hook.</td>
</tr>
<tr>
<td>4</td>
<td>Lift the cover of the gear case of the reduction motor up slightly to undo the upper hook, and remove it.</td>
</tr>
</tbody>
</table>

Points

![Diagram](R5674)

![Diagram](R5675)

![Diagram](R5676)
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Pull the gear out to remove. Remove the screw of the reduction motor.</td>
</tr>
<tr>
<td>6</td>
<td>Turn the assembly over and detach the sealing tape of the reduction motor.</td>
</tr>
<tr>
<td>7</td>
<td>Release the 2 hooks of the limit switch.</td>
</tr>
</tbody>
</table>

Points

- The connector of the reduction motor can be disconnected.
1.6 Removal of Electrical Box

Procedure Warning
Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Disconnect the wire harnesses around the electrical box</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Open the cover of the electrical box.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Remove the 4 screws of the terminal board to remove the connection wire.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The figure shows the arrangement of wiring of wire harnesses (front) and names of parts.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Procedure</td>
<td>Points</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>4</td>
<td>The figure shows the arrangement of wiring of wire harnesses (under) and names of parts.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Disconnect the connector for dehumidifying solenoid valve [S43].</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Disconnect the connector for streamer unit [S52].</td>
<td></td>
</tr>
</tbody>
</table>
Indoor Unit SiUS04-921

Step 7
Disconnect the connector for swing motor [S41].

- The connector [S41] is for both horizontal blades and vertical blades.

Step 8
Disconnect the connector for fan motor [S1], and release the 1 hook.

Downloaded from www.Manualslib.com manuals search engine
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Remove the screw of the drip proof cover.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Remove the screw of the ground wire.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Disconnect the heat exchanger thermistor.</td>
<td>Be careful not to lose the clip for thermistor.</td>
</tr>
</tbody>
</table>

2. Removal of the electrical box

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove the screw of the electrical box.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Procedure</td>
<td>Points</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>2</td>
<td>Close the cover and slide to undo the hook in the key hole.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Push up the bottom side of the electrical box, or push the bottom frame to the back.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Release the upper hook first.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>The shapes of the hook on back side.</td>
<td>- When assembling, insert the upper hook, push slightly, and make sure to catch the lower hook.</td>
</tr>
</tbody>
</table>
1.7 Removal of PCB

Procedure Warning
Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 1 | Removal of the shelter | Preparation
- Remove the electrical box according to "Removal of the Electrical Box." |
| 1 | External appearance of the electrical box. | |
| 2 | Release the hook of the cover. | |
| 3 | While opening the shelter, undo the lower hook and lift the cover up to undo the upper hook on the back. | |
180 Removal Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Slide the cover upward while lifting up (without being hooked) and undo the 2 sockets.</td>
<td></td>
</tr>
</tbody>
</table>

2. Removal of the power supply terminal board

| 1 | Remove the 1 screw and pull out the terminal board sideward. | ![Image](R10164) |
| 2 | On the terminal board, disconnect the red terminal with pliers and the black and white terminals with a flat screwdriver. | ![Image](R10165) |
| | | Black (1) Power supply |
| | | White (2) Power supply |
| | | Red (3) Signal |
| | | Green/Yellow ... earth |

3. Removal of the control PCB

<p>| 1 | Cut the 3 clamps. | |
| | | Clamps should be used all the time. |
| | | Fix it as it was before. |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Release the ground wire from the hook.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Disconnect the connectors [S46] and [S48].</td>
<td>[S46]: to the display PCB [S56] [S48]: to the sensor PCB [CN1]</td>
</tr>
<tr>
<td>4</td>
<td>Push out the connector for reduction motor mechanism while pinching the connector from the back side of the electrical box cover.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Remove the 2 screws and remove the control PCB.</td>
<td></td>
</tr>
</tbody>
</table>
Indoor Unit SiUS04-921

182 Removal Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 6 | Names of parts of the control PCB. | ![Image](image1)

- **[S1]:** Fan motor
- **[S21]:** HA
- **[S32]:** Heat exchanger
- **[S41]:** Swing motor
- **[S43]:** Solenoid valve
- **[S46]:** to Display PCB
- **[S48]:** to Sensor PCB
- **[S51]:** Open/close mechanism
- **[S52]:** Streamer unit

4. Removal of the sensor PCB

1. Release the 1 hook and pull out the sensor PCB.

 ![Image](image2)

5. Removal of the receiver PCB and the display PCB

1. The arrangement of the wire harnesses.

2. Detach the fixing tape and disconnect the connector.

 ![Image](image3)
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Release the upper hook.</td>
<td>Using a flat screwdriver makes it easy to undo the hook.</td>
</tr>
<tr>
<td>4</td>
<td>Release the lower hook.</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of upper hook release](R10172)

![Diagram of lower hook release](R10173)

![Diagram of ON/OFF switch and transmitter](R5714)
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Release the 2 hooks of the receiver PCB and the 2 hooks of the display PCB.</td>
<td>- The receiver PCB and the display PCB are united.</td>
</tr>
</tbody>
</table>

Diagram:
- **Image 1:** Hooks connecting the receiver PCB and display PCB.
- **Image 2:** Diagram showing the integral components of the PCB assembly.
1.8 Removal of Dehumidifying Solenoid Valve Coil

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Detach the lead wire from the drip proof cover.</td>
<td>Preparation: Remove the front grille according to "Removal of the Front Grille."</td>
</tr>
<tr>
<td>2</td>
<td>Disconnect the connector for dehumidifying solenoid valve [S43].</td>
<td>Four-way valve does not need screws.</td>
</tr>
<tr>
<td>3</td>
<td>Pull the dehumidifying solenoid valve coil to remove.</td>
<td></td>
</tr>
</tbody>
</table>

Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.
1.9 Removal of Drain Hose

Procedure Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Removal of the drain hose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Remove the screws of the main unit and installation plate.</td>
<td>- Cover the drain hose with plastic bags or the like so the remaining drainage will not wet the floor.</td>
</tr>
<tr>
<td>2</td>
<td>Lift the main unit slightly and remove the drain hose, in case of piping as shown in figure on the right.</td>
<td>- Part A is fixed by the screw from back side. When replacing the hose, make sure to tighten a screw as there is no gap between the heat insulator and the hose.</td>
</tr>
</tbody>
</table>

2. How to change drain piping to the left

1 | Detach the drain plug on the left. | |

(R10176)

(R5727)

(R5728)
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Insert the drain hose removed in the previous step.</td>
<td>• Make sure to check if the drain hose is inserted firmly.</td>
</tr>
</tbody>
</table>
| 3 | Insert the detached drain plug with an Allen wrench (4mm). | **Caution**
Do not push the drain plug with a sharp device like a screwdriver as it can damage the drain plug, resulting in water leakage. |
1.10 Removal of Swing Motor

Procedure Warning
Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Removal of the swing motor for horizontal blade</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | There are 3 hooks for the lead wire for swing motor. | Preparation
- Remove the electrical box according to "Removal of the Electrical Box." |
| 2 | Cut the clamp with nippers. | |
| 3 | Undo the lead wire for swing motor from the hooks. | |
| 4 | Remove the 1 screw and remove the swing motor for the horizontal blades (large) and for the horizontal blades (small). | |

| 2. Removal of the swing motor for vertical blades | | |
| 1 | Remove the 1 screw of the drain hose. | Working without removing the drain hose is possible. |

- The connector for swing motor is disconnectable.
- The same swing motors are used for both large and small horizontal blades.
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Release the upper hook of the cover with a flat screwdriver.</td>
<td>- The hook on the back of the assembly of swing motor.</td>
</tr>
<tr>
<td>4</td>
<td>Release the hook of connecting shaft for vertical blades.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Remove the assembly of swing motor.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Remove the 2 screws of the swing motor for vertical blades.</td>
<td>- When assembling the swing motor for vertical blades, remove the drain hose.</td>
</tr>
</tbody>
</table>
1.11 Removal of Heat Exchanger

Procedure Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 1. | **Removal of the refrigerant piping**
1. Put a wooden block under the indoor unit and pull out the refrigerant piping, drain hose, connection wirings, and so on. | **Preparation**
¬ Remove the drain hose according to "Removal of Drain Hose."
Caution
¬ In pump-down work, be sure to stop the compressor before disconnecting the refrigerant pipe. If the refrigerant pipe is disconnected with the compressor running and the stop valve being open, air may be sucked in and cause an over-pressure in refrigeration cycle, thus resulting in pipe rupture or accidental injury. |
| 2. | Disconnect the flare nut of the connection of gas pipe with 2 spanners. | **Caution**
¬ Be careful that remaining drain water will not wet the floor.
¬ If the drain hose is embedded in the wall, disconnect the drain hose beforehand.
¬ Carry out the removal works with 2 pair of spanners. |
| 3. | Disconnect the flare nut of the connection of liquid pipe with 2 spanners. | **Caution**
From the point of view of environmental protection, be sure to use a vacuum pump for air purging. |

(R10179) (R10180) (R10181)
Removal Procedure

2. Removal of the indoor unit

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove the indoor unit from the installation plate.</td>
<td>- When the pipes are disconnected, protect both the pipe side and unit side openings from any moisture entering.</td>
</tr>
</tbody>
</table>

![Image](R10182)

3. Removal of the heat exchanger

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unfasten the hook of the pipe fixing plate at the back of the unit and pull out the pipe.</td>
<td>- Release the 2 hooks on the side with a flat screwdriver.</td>
</tr>
<tr>
<td>2</td>
<td>Widen the auxiliary pipe by about 10-20 degrees.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Procedure</td>
<td>Points</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>3</td>
<td>Remove the 2 fixing screws for heat exchanger on the left.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lift the left side of the heat exchanger, and pull toward yourself.</td>
<td>Caution When dismounting or mounting the heat exchanger, be sure to wear gloves or wrap it with cloth before proceeding with the work as fins can injure your hands.</td>
</tr>
<tr>
<td>5</td>
<td>Release the hook through the gap in the pipes.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Slide to right to undo the hook and lift the heat exchanger up.</td>
<td>Be careful so the solenoid valve will not be caught in the hook.</td>
</tr>
</tbody>
</table>
1.12 Removal of Propeller Fan / Fan Motor

Procedure Warning: Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Removal of the right side panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Remove the 2 screws of the right side panel.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Release the far side hook of the right side panel while inclining toward yourself and then remove it.</td>
<td></td>
</tr>
<tr>
<td>2. Removal of the fan rotor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Remove the 1 screw of the fan motor fixture.</td>
<td>Preparation</td>
</tr>
<tr>
<td>2</td>
<td>Release the 2 hooks and remove the fan motor fixture.</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of right side panel and hook](R5752)
![Diagram of right side panel](R5753)
![Diagram of fan motor fixture and hook](R5754)
![Diagram of fan motor fixture](R5755)
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Remove the fan motor and fan rotor.</td>
<td>- The fan motor fixture (lower) can be removed by pushing the hook.</td>
</tr>
<tr>
<td>3.</td>
<td>Removal of the fan motor</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Remove the fixing screw for fan rotor and fan motor.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Remove the fan motor and fan rotor.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Removal of the bearing</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Remove the fan rotor.</td>
<td></td>
</tr>
</tbody>
</table>

Indoor Unit SiUS04-921

194 Removal Procedure

Downloaded from www.Manualslib.com manuals search engine
Step 2
Procedure: Undo the 1 hook of the bearing.

Step 3
The bearing is made of rubber. Push it inward firmly and remove it.

Steps Procedure Points
- **0.2inch (5mm)**
- Side face of bottom frame
- Side face of rotor

5. How to install the fan motor

1. When assembling, align the mark on the shaft.

2. Reassembling the fan motor:
 - When reassembling the fan rotor, provide as much as 0.2inch (5mm) of play between the side face of the rotor and the bottom frame.

 - **Insert the fan motor approx. 0.2inch (5mm)**
 - **Tighten the screw until it stops. Then turn the screw in one scroll.**
 - **Move the fan rotor and confirm the fan motor and the fan rotor are installed appropriately.**
 - **Tighten the screw completely if appropriate.**
 - **If not appropriate, go back to 1.**
1.13 Removal of Horizontal Blades / Vertical Blades

Procedure Warning
Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Removal of the horizontal blade</td>
<td></td>
</tr>
</tbody>
</table>
1. Open the horizontal blade (large).
2. Release the center fixture for the horizontal blade (large).
3. Release the left shaft while bending the horizontal blade (small) slightly. Remove the horizontal blade (small).
4. Release the right shaft of the horizontal blade (large), and then remove the blade. |

- When installing the horizontal blades, be careful not to put the large and small blades in the wrong position.
- There is a key alignment mark at the right side.
Removal Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Removal of the fan guard</td>
<td>1 Release the 4 hooks of the fan guard and pull it out toward yourself to remove.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Removal of the interlocking shaft</td>
<td>1 Release the hook of the interlocking shaft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Remove the interlocking shaft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Procedure</td>
<td>Points</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>4.</td>
<td>Removal of the vertical blades</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Release the 3 hooks of the vertical blades with a flat screwdriver.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Remove the vertical blades.</td>
<td></td>
</tr>
</tbody>
</table>
1.14 Removal of Streamer Unit

Procedure

Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Removal of the streamer unit</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Names of parts of the streamer unit.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Open the cover of the electrical box, disconnect the connector for streamer unit [S52], and remove the 1 screw.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Release the wire harness for solenoid valve coil from drip proof cover.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Procedure</td>
<td>Points</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>4</td>
<td>Slide the streamer unit to the right side.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Remove it toward yourself.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cut the clamp and remove the 1 screw of the drip proof cover.</td>
<td></td>
</tr>
</tbody>
</table>

2. Removal of the cover of streamer unit

1. Remove the 2 screws of the cover.

- View from the back side (7 hooks)
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Turn it back and undo the 7 hooks.</td>
<td></td>
</tr>
</tbody>
</table>

3. Removal of the deodorizing filter and electrode unit

1. Remove the deodorizing filter and electrode unit.

2. Slide the cover of the electrode unit to the left to remove.

- See page 158 for removal of the deodorizing filter.

- When assembling, slide to the right.

3. Electrode for discharging.
Step 4: Removal of the streamer unit PCB

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove the 1 screw of the electrode plate with a precise screwdriver.</td>
</tr>
<tr>
<td>2</td>
<td>Release the 2 hooks of the streamer unit PCB.</td>
</tr>
</tbody>
</table>

Points

Step Procedure Points

- **Step 4: Removal of the streamer unit PCB**
 - **Procedure**: Remove the 1 screw of the electrode plate with a precise screwdriver. Release the 2 hooks of the streamer unit PCB.

Points

- **Point**: Disconnect the limit switch.
2. Outdoor Unit

2.1 How to Check the Service Monitor (LED A)

Procedure Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Remove the top panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Remove the 2 screws of the top panel.</td>
<td></td>
</tr>
<tr>
<td>2. Remove the electrical box (cover).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Remove the 1 screw of the electrical box (cover).</td>
<td></td>
</tr>
</tbody>
</table>
Outdoor Unit SiUS04-921

204 Removal Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lift the electrical box (cover) and remove it.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Remove the drip proof cover</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Lift the insulation sheet and remove it.</td>
<td>- Service monitor (LED A).
- Check the LED from the slit.</td>
</tr>
</tbody>
</table>
2.2 Removal of Propeller Fan / Fan Motor

Procedure Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Removal of the top panel</td>
<td>1 Remove the 2 screws of the top panel.</td>
<td></td>
</tr>
<tr>
<td>2. Remove the front panel</td>
<td>1 Remove the 7 screws of the front panel. There are 5 hooks in total of right and left. Lift the front panel and pull it out toward yourself.</td>
<td></td>
</tr>
</tbody>
</table>
Removal Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Remove the 4 screws to remove the front grille.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Remove the 1 screw and remove the stop valve cover.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Removal of the propeller fan</td>
<td>When assembling, align the ▼ mark of the propeller fan and D cut of the motor shaft.</td>
</tr>
<tr>
<td>1</td>
<td>Remove the fan fixing nut and remove the propeller fan.</td>
<td></td>
</tr>
</tbody>
</table>

Step Procedure Points
- Front grille
 - (R10198)
 - (R10199)
Step Procedure Points

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>- When assembling the fan motor, let the (\bullet) mark go upper. (The direction of the lead wire outlet.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Remove the fan fixing nut with the 13mm spanner.</td>
</tr>
</tbody>
</table>

4. Removal of the fan motor

1. **Disconnect the fan motor connector [S70] from PCB.**

2. **Detach the lead wire for fan motor and pass the lead wire downward through the opening.**
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Remove the 1 screw of the fan motor fixing plate.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Detach the upper part of the fan motor fixing plate.</td>
<td>■ Heat exchanger fin</td>
</tr>
<tr>
<td>5</td>
<td>Fan motor fixing plate has the 2 hooks on lower part.</td>
<td></td>
</tr>
</tbody>
</table>
Removal Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Release the fixing hook for lead wire and detach the lead wire.</td>
<td>- When assembling, put the lead wire through the back of the motor so as not to be entangled with the propeller fan.</td>
</tr>
<tr>
<td>7</td>
<td>Remove the 4 screws of the fan motor.</td>
<td>(R3249)</td>
</tr>
</tbody>
</table>
| 8 | Pull out the rubber vibration isolators sideward. | (R10203)

Step Procedure Points

- **SiUS04-921 Outdoor Unit**
- **Removal Procedure 209**

Downloaded from www.Manualslib.com manuals search engine
2.3 Removal of Electrical Box

Procedure

Warning: Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Disconnect the wire harnesses of the PCB</td>
<td>Preparation: Remove the front panel according to "Removal of Propeller Fan / Fan Motor."</td>
</tr>
<tr>
<td>2.</td>
<td>Disconnect the connector for four-way valve coil [S80].</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Disconnect the connector for expansion valve coil [S20].</td>
<td></td>
</tr>
</tbody>
</table>
4 Disconnect the connector for thermistor assembly [S90].

5 Disconnect the terminal from the reactor.

6 Disconnect the relay harness for compressor.

Thermistor assembly is in a set of 3 thermistors: Outdoor air, heat exchanger, and discharge pipe thermistors.
2. Disconnect the power supply / connecting wiring

1. Remove the 2 screws of the radiation shield plate to remove.

2. Remove the 1 screw of the ground wire.

3. Disconnect all the connecting wires.
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Disconnect the connectors: black - power supply, white - power supply, red - signal</td>
<td>Black: power supply, White: power supply, Red: signal</td>
</tr>
<tr>
<td>5</td>
<td>Undo the clip for the thermistor assembly fixed to the electrical box.</td>
<td>The clip is push-mount type.</td>
</tr>
<tr>
<td>6</td>
<td>Remove the 1 screw in front and 1 screw on the right of the electrical box.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Lift the electrical box to remove it.</td>
<td></td>
</tr>
</tbody>
</table>
2.4 Removal of PCB

Procedure

Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove the 1 screw of the electrical box (cover). Lift the electrical (cover) and remove.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lift the insulation sheet and remove.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Remove the 5 screws for the PCB or the radiation fin.</td>
<td></td>
</tr>
</tbody>
</table>

Preparation
- Remove the electrical box according to "Removal of Electrical Box."
- The control PCB is in upside down.
- PbF (Pb free brazing) is adopted. When replacing, use a exclusive solder and soldering iron.
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 4 | Remove the radiation fin from the PCB. | - In working, be careful not to break the PCB with the excessive force because the PCB and the radiation fin are adhered to one another.
- When assembling, make sure to use the silicon material.
Silicon material
Part No.: 1172698 |
<p>| 5 | Remove the 2 screws and 1 clip to remove the radiation shield plate. | |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Cut the 3 fixing clamps for the wire harnesses.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Remove the 2 fixing screws of the PCB.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Raise the PCB toward yourself and undo the 3 hooks of the electrical box.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Procedure</td>
<td>Points</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>9</td>
<td>Remove the PCB from the electrical box.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Names of parts of PCB.</td>
<td>S20 : Expansion valve
S45 : Thermal fuse
S70 : Fan motor
S80 : Four way valve
S90 : Thermistor (outdoor air / heat exchanger / discharge pipe)</td>
</tr>
</tbody>
</table>
2.5 Removal of Sound Blanket

Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 1 | Removal of the right side panel | Preparation
 - Remove the electrical box according to "Removal of Electrical Box." |
<p>| | 1. Remove the 3 screws on the back side of the right side panel. |
| | 2. Remove the 2 screws on the right and slide the panel to undo the lower hook. |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Removal of the sound blanket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Lift the sound blanket (top) to remove it.</td>
<td>Since the piping ports on the sound blanket are torn easily, remove the blanket carefully.</td>
</tr>
<tr>
<td>2</td>
<td>Undo the fixing strings of the sound blanket (outer body).</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Open the sound blanket (outer body) and pull it out.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Open the sound blanket (inner body) and pull it out.</td>
<td></td>
</tr>
</tbody>
</table>
2.6 Removal of Thermistor Assembly

Procedure Warning

Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 1 | The figure shows the arrangement of the thermistors. | **Preparation**

- Remove the thermistor assembly according to "Removal of Electrical Box." |

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Remove the 3 screws on the back side of the right side panel and detach the outdoor air thermistor.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Remove the 2 screws on the right and slide the panel to undo the lower hook.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Procedure</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>Detach the heat exchanger thermistor.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lift the sound blanket (top) to remove it.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Detach the discharge pipe thermistor.</td>
</tr>
</tbody>
</table>
2.7 Removal of Reactor / Partition Plate

Procedure Warning Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Removal of the reactor</td>
<td>Preparation
Remove the sound blanket according to "Removal of Sound Blanket."
The reactor can be detached by removing only 1 screw.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Remove the 1 screw and lift the reactor to remove it.</td>
<td></td>
</tr>
<tr>
<td>2. Removal of the partition plate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Remove the 2 screws and lift the plate to remove it.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Procedure</td>
<td>Points</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- When assembling, make sure to catch the lower hook of the partition plate.</td>
</tr>
</tbody>
</table>
2.8 Removal of Four Way Valve

Warning
Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 1. | Removal of the peripheral parts | Preparation
- Remove the sound blanket according to "Removal of Sound Blanket." |
<p>| 1 | Remove the 1 screw of the four-way valve coil. | (R10242) Four way valve coil |
| 2 | Remove the expansion valve coil. | (R10243) |
| 3 | Remove the putty. | (R5887) Putty |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Provide a protective sheet or a steel plate so that the brazing flame cannot influence peripheries.</td>
<td>Cautions for restoration: 1. Restore the piping by non-oxidation brazing. In case of you cannot use the nitrogen gas, restore as quickly as possible. 2. It is required to prevent the carbonization of the oil inside the four way valve and the deterioration of the gaskets affected by heat. For the sake of this, wrap the four way valve with wet cloth and provide water so that the cloth will not be dried and avoid excessive heating. (Keep below 120°C)</td>
</tr>
<tr>
<td>2.</td>
<td>Be sure to apply nitrogen replacement when heating up the brazed part.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Before working, make sure that the refrigerant is empty in the circuit.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Be sure to apply nitrogen replacement when heating up the brazed part.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Be careful so as not to break the pipes by pressing it excessively by pliers when withdrawing it.</td>
<td></td>
</tr>
</tbody>
</table>

2. Removal of four-way valve

1. Heat up the 4 brazed parts of the four-way valve. Remove it in the order of a, b, c, d.

Warning
Ventilate when refrigerant leaks during the work.
If refrigerant contacts fire, it will cause toxic gas.

Caution
Be careful not to get yourself burnt with the pipes and other parts that are heated by the gas welding rod.

Caution
From the viewpoint of global environment protection, do not discharge the refrigerant gas in the atmosphere. Make sure to recover the refrigerant gas with a recovery system.

2. Heat up the brazed part and pull out the piping side with pliers.

In case of the difficulty with gas brazing machine
1. Disconnect the brazed part where is easy to disconnect and restore.
2. Cut pipes on the main unit by a miniature copper tube cutter in order to make it easy to disconnect.

Note
Do not use a metal saw for cutting pipes or sawdust will enter the circuit.
2.9 Removal of the Expansion Valve

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 1. | Remove the peripheral parts
• Four-way valve coil
• Expansion valve coil
• Putty
and so on so as not to be damaged by the brazing flame. | Preparation
■ Remove the sound blanket according to "Removal of Sound Blanket."
■ When assembling, make sure to catch the hook of the expansion valve coil as before. | |
| 2. | Remove the four-way valve coil. | Warning
Ventilate when refrigerant leaks during the work. If refrigerant contacts fire, it causes toxic gas. | |
| 3. | Remove the expansion valve coil. | Caution
Be careful not to burn yourself with the pipes and other parts that are heated by the gas welding rod. | |
| 4. | Remove the putty. | Caution
From the viewpoint of global environment protection, do not discharge the refrigerant gas in the atmosphere. Make sure to recover the refrigerant gas with the recovery system. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
</table>
| 1. | Remove the 2 brazed parts in the order of a, b. | - Be careful so as not to burn the heat exchanger fin.
- When assembling, make sure to catch the hook of the expansion valve coil as before. |
| 2. | Remove the expansion valve. | |
2.10 Removal of Compressor

Procedure

Warning

Be sure to wait 10 minutes or more after turning off all power supplies before disassembling work.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Removal of the peripheral parts</td>
<td>Preparation
■ Remove the sound blanket according to "Removal of Sound Blanket".</td>
<td>Points
■ Be careful so as not to burn the compressor terminals or the name plate. Make a note.</td>
</tr>
<tr>
<td>1</td>
<td>Remove the terminal cover.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Detach the lead wires for compressor and overload protector.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Remove the protecting bushing for the lead wire.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Remove the 3 fixing nuts for compressor.</td>
<td></td>
</tr>
</tbody>
</table>
Step Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Provide a protective sheet or a steel plate so that the brazing flame cannot influence peripheries.</td>
</tr>
<tr>
<td></td>
<td>Before working, make sure that the refrigerant is empty in the circuit.</td>
</tr>
<tr>
<td></td>
<td>Be sure to apply nitrogen replacement when heating up the brazed part.</td>
</tr>
<tr>
<td>2.</td>
<td>Removal of the compressor</td>
</tr>
<tr>
<td>1.</td>
<td>Disconnect the brazing part of the compressor on the discharge side.</td>
</tr>
<tr>
<td>2.</td>
<td>Heat up and disconnect the brazing part on the suction side.</td>
</tr>
<tr>
<td>3.</td>
<td>Lift up and remove the compressor.</td>
</tr>
</tbody>
</table>

Warning
Ventilate when refrigerant leaks during the work. If refrigerant contacts fire, it will cause toxic gas.

Caution
Be careful not to burn yourself with the pipes and other parts that are heated by the gas welding rod.

Cautions for restoration

1. Restore the piping by non-oxidation brazing. In case of you cannot use the nitrogen gas, restore as quickly as possible.
2. It is required to prevent the carbonization of the oil inside the four-way valve and the deterioration of the gaskets affected by heat, so wrap the four-way valve with a wet cloth and provide water to ensure that the cloth does not dry out, and to prevent excessive heating. (Keep below 120°C)

Note: Do not use a metal saw for cutting pipes or sawdust will enter the circuit.

In case of the difficulty with gas brazing machine

1. Disconnect the brazed part which is easy to disconnect and restore.
2. Cut pipes on the main unit by a miniature copper tube cutter in order to make it easy to disconnect.
Part 8
Additional Information

1. Additional Information ...232
 1.1 Trial Operation...232
 1.2 Field Setting ...233
 1.3 Application of Silicon Grease to a Power Transistor and
a Diode Bridge...234
1. Additional Information

1.1 Trial Operation

1.1.1 Trial Operation and Testing

1. Measure the supply voltage and make sure that it falls in the specified range.
2. Trial operation should be carried out in either cooling or heating mode.
3. Operate the unit in accordance with the operation manual to check that it operates normally.
 - Even when the air conditioner is not operating, it consumes some electric power. If the customer is not going to use the unit soon after it is installed, turn off the breaker to avoid wasting electricity.

For Heat pump

- In cooling mode, select the lowest programmable temperature; in heating mode, select the highest programmable temperature.
- Trial operation may be disabled in either mode depending on the room temperature.
- After trial operation is complete, set the temperature to a normal level.
 - (26°C to 28°C (78°F to 82°F) in cooling mode, 20°C to 24°C (68°F to 75°F) in heating mode)
- For protection, the system disables restart operation for 3 minutes after it is turned off.

1.1.2 Trial operation from Remote Controller

1. Hold the “CLOCK” button for 5 seconds.
 (The matrix display will appear on the remote controller.)
2. Display “SETTING I, TEST” on the matrix display of the remote controller and press the “CLOCK” button.
3. “I” will be displayed and the unit will enter test run mode.
4. Press the corresponding mode button for the trial operation.
 - Trial operation will stop automatically after around 30 minutes.
 Press the ON/OFF button to stop.
1.2 Field Setting

1.2.1 How to set the different addresses

When 2 indoor units are installed in 1 room, the 2 wireless remote controllers can be set for different addresses.

1) Remove the front grille. (3 screws)
2) Cut the address jumper “JA”.
 (See Fig. 1)

3) Remove the remote controller lid and cut the address jumper “J4”.
 (See Fig. 2)

1.2.2 Jumper Setting

<table>
<thead>
<tr>
<th>Jumper (On indoor control PCB)</th>
<th>Function</th>
<th>When connected (factory set)</th>
<th>When cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>JC</td>
<td>Power failure recovery function</td>
<td>Auto-restart</td>
<td>Unit does not resume operation after recovering from a power failure. Timer ON-OFF settings are cleared.</td>
</tr>
<tr>
<td>JB</td>
<td>Fan speed setting when compressor is OFF on thermostat. (effective only at cooling operation)</td>
<td>Fan speed setting ; Remote controller setting</td>
<td>Fan rpm is set to “0” <Fan stop></td>
</tr>
</tbody>
</table>

Fig. 1

Fig. 2
1.3 Application of Silicon Grease to a Power Transistor and a Diode Bridge

Applicable Models

All outdoor units using inverter type compressor for room air conditioner.

When the printed circuit board of an outdoor unit is replaced, it is required that silicon grease (*1) is applied to the heat radiation part (the contact point to the heat radiation fin) of the power transistor and diode bridge.

*1: Parts number of the silicon grease – 1172698 (Drawing number 3FB03758-1)

Details

The silicon grease is an essential article for encouraging the heat radiation of the power transistor and the diode bridge. Applying the paste should be implemented in accordance with the following instruction.

Remark: There is the possibility of failure with smoke in case of bad heat radiation.

- Completely wipe off the old silicon grease on a heat radiation fin.
- Evenly apply the silicon grease to the whole unit.
- Do not have any foreign object such as solder or paper waste between the power transistor, the diode bridge and the heat radiation fin.
- Firmly tighten the screws of the power transistor and the diode bridge, and ensure contact to the heat radiation fin without any gap.

<Example>

![Diagram showing application of silicon grease to a power transistor and diode bridge]

- **OK**: Evenly applied silicon grease.
- **NG**: Not evenly applied
- **NG**: Foreign object.
- **Paper wastage**
- **Not applied**
Part 9
Appendix

1. Piping Diagrams..236
 1.1 Indoor Units..236
 1.2 Outdoor Units...236

2. Wiring Diagrams..237
 2.1 Indoor Units..237
 2.2 Outdoor Units...237
1. Piping Diagrams

1.1 Indoor Units

FTXG09/12/15HVJU

1.2 Outdoor Units

RXG09/12/15HVJU
2. Wiring Diagrams

2.1 Indoor Units

FTXG09/12/15HVJU

2.2 Outdoor Units

RXG09/12/15HVJU

NOTE
1. REFER TO THE NAMEPLATE FOR THE POWER REQUIREMENTS.

Downloaded from www.Manualslib.com manuals search engine
Symbols
“inverter checker” check ..145
“sarara” drying operation ..12

dew prevention ..44

Numerics
1/f fluctuation ..20
24-hour on/off timer ..30
3-d airflow ...22

A
a1 ...96
a5 ...97
a6 ...99
abnormal temperature in electrical box126
address setting jumper ...8
adjusting airflow direction ...77
ah ...101
air filters ...156
airflow rate ...77
auto operation ..75
automatic airflow ...34
automatic defrosting ..46
automatic operation ...18
auto-restart ...8

B
bearing ...194

C
c4 ..103
c7 ..104
c9 ..103
cc ..105
centralized control ...8
check
“inverter checker” check ..145
discharge pressure check ...147
electronic expansion valve check148
four way valve for dehumidification check153
four way valve performance check152
humidity sensor check ...151
indoor unit pcb output check149
installation condition check142
main circuit electrolytic capacitor check143
main circuit short check ...151
outdoor fan system check (dc motor)142
power supply waveform check143
power transistor check ..146
refrigerant system check ...144
rotating pulse input on outdoor unit pcb check150
thermistor resistance check141
check no.11 ...143
check no.12 ...144
check no.14 ...145
check no.15 ...146
check no.16 ...147
check no.17 ...148
check no.18 ...149
check no.2 ...141
check no.23 ..150
check no.27 ..151
check no.29 ..151
check no.3 ...142
check no.31 ..152
check no.32 ..153
check no.5 ...142
check no.8 ...143
child proof lock ...81
cn1 ...8
combination of on timer and off timer31
comfort airflow ..78
comfort airflow mode ..19
comfort sleep operation ...16, 80
communication circuit abnormality135
compressor ..228
compressor lock ..111
compressor overload ...110
compressor sensor system abnormality120
compressor start up protection39
connectors ...8, 10
control for abnormally high discharge temperature52
control pcb (indoor) ..8, 180
control pcb (outdoor) ...10
control when frequency is changed49
control when starting ...48
cooling breeze operation ..20, 78
cooling operation ..73
countdown off timer ..31

D
dc current sensor abnormality123
dc fan lock ...112
dc voltage abnormality ..123
defrost control ..46
dehumidifying four way valve175
dehumidifying four way valve coil185
deoectorizing filter for streamer158
deoectorizing performance ..29
description of operation ...12
dew prevention ..44
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnosis mode</td>
<td>32</td>
</tr>
<tr>
<td>different addresses</td>
<td>233</td>
</tr>
<tr>
<td>diode bridge</td>
<td>234</td>
</tr>
<tr>
<td>discharge pipe temperature control</td>
<td>45, 117</td>
</tr>
<tr>
<td>discharge pipe thermistor</td>
<td>124, 221</td>
</tr>
<tr>
<td>discharge pressure check</td>
<td>147</td>
</tr>
<tr>
<td>discharge temperature, abnormally high</td>
<td>52</td>
</tr>
<tr>
<td>display pcb</td>
<td>8, 182</td>
</tr>
<tr>
<td>draft prevention</td>
<td>36</td>
</tr>
<tr>
<td>draftless operation</td>
<td>19</td>
</tr>
<tr>
<td>drain hose</td>
<td>186</td>
</tr>
<tr>
<td>drain plug</td>
<td>186</td>
</tr>
<tr>
<td>drip proof cover</td>
<td>177, 204</td>
</tr>
<tr>
<td>dry cooling operation</td>
<td>15</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>e1</td>
<td>109</td>
</tr>
<tr>
<td>e5</td>
<td>110</td>
</tr>
<tr>
<td>e6</td>
<td>111</td>
</tr>
<tr>
<td>e7</td>
<td>112</td>
</tr>
<tr>
<td>e8</td>
<td>113</td>
</tr>
<tr>
<td>ea</td>
<td>115</td>
</tr>
<tr>
<td>electrical box</td>
<td>126</td>
</tr>
<tr>
<td>electrical box (indoor)</td>
<td>174</td>
</tr>
<tr>
<td>electrical box (outdoor)</td>
<td>210</td>
</tr>
<tr>
<td>electronic expansion valve check</td>
<td>148</td>
</tr>
<tr>
<td>electronic expansion valve control</td>
<td>47</td>
</tr>
<tr>
<td>error code</td>
<td></td>
</tr>
<tr>
<td>a1</td>
<td>96</td>
</tr>
<tr>
<td>a5</td>
<td>97</td>
</tr>
<tr>
<td>a6</td>
<td>99</td>
</tr>
<tr>
<td>a8</td>
<td>101</td>
</tr>
<tr>
<td>c7</td>
<td>104</td>
</tr>
<tr>
<td>c9</td>
<td>103</td>
</tr>
<tr>
<td>cc</td>
<td>105</td>
</tr>
<tr>
<td>e1</td>
<td>109</td>
</tr>
<tr>
<td>e5</td>
<td>110</td>
</tr>
<tr>
<td>e6</td>
<td>111</td>
</tr>
<tr>
<td>e7</td>
<td>112</td>
</tr>
<tr>
<td>e8</td>
<td>113</td>
</tr>
<tr>
<td>ea</td>
<td>115</td>
</tr>
<tr>
<td>f3</td>
<td>117</td>
</tr>
<tr>
<td>f6</td>
<td>118</td>
</tr>
<tr>
<td>h0</td>
<td>120</td>
</tr>
<tr>
<td>h6</td>
<td>121</td>
</tr>
<tr>
<td>h8</td>
<td>123</td>
</tr>
<tr>
<td>h9</td>
<td>124</td>
</tr>
<tr>
<td>j3</td>
<td>124</td>
</tr>
<tr>
<td>j6</td>
<td>124</td>
</tr>
<tr>
<td>l3</td>
<td>126</td>
</tr>
<tr>
<td>l4</td>
<td>128</td>
</tr>
<tr>
<td>l5</td>
<td>130</td>
</tr>
<tr>
<td>p4</td>
<td>124</td>
</tr>
<tr>
<td>u0</td>
<td>132</td>
</tr>
<tr>
<td>u2</td>
<td>134</td>
</tr>
<tr>
<td>u4</td>
<td>106, 135</td>
</tr>
<tr>
<td>u7</td>
<td>138</td>
</tr>
<tr>
<td>ua</td>
<td>108</td>
</tr>
<tr>
<td>error code indication</td>
<td>87</td>
</tr>
<tr>
<td>expansion valve</td>
<td>226</td>
</tr>
<tr>
<td>expansion valve coil</td>
<td>210</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>f3</td>
<td>117</td>
</tr>
<tr>
<td>f6</td>
<td>118</td>
</tr>
<tr>
<td>failure diagnosis</td>
<td>87</td>
</tr>
<tr>
<td>by led indication</td>
<td>86</td>
</tr>
<tr>
<td>by remote controller</td>
<td>85</td>
</tr>
<tr>
<td>with operation lamp</td>
<td>85</td>
</tr>
<tr>
<td>fan motor</td>
<td>193</td>
</tr>
<tr>
<td>fan motor (indoor)</td>
<td>176</td>
</tr>
<tr>
<td>fan motor (outdoor)</td>
<td>205, 210</td>
</tr>
<tr>
<td>fan motor system (dc motor) abnormality</td>
<td>99</td>
</tr>
<tr>
<td>fan rotor</td>
<td>193</td>
</tr>
<tr>
<td>fan speed control (indoor unit)</td>
<td>34</td>
</tr>
<tr>
<td>fan speed control (outdoor unit)</td>
<td>40</td>
</tr>
<tr>
<td>fan speed setting</td>
<td>8, 233</td>
</tr>
<tr>
<td>field setting</td>
<td>233</td>
</tr>
<tr>
<td>filter cleaning indicator</td>
<td>30</td>
</tr>
<tr>
<td>filters</td>
<td></td>
</tr>
<tr>
<td>air filter</td>
<td>156</td>
</tr>
<tr>
<td>deodorizing filter for streamer</td>
<td>158</td>
</tr>
<tr>
<td>titanium apatite photocatalytic air-purifying filter</td>
<td>160</td>
</tr>
<tr>
<td>fin thermistor control</td>
<td>41</td>
</tr>
<tr>
<td>flash streamer air purifying</td>
<td>76</td>
</tr>
<tr>
<td>flash streamer air purifying operation</td>
<td>27</td>
</tr>
<tr>
<td>forced humidifying drying mode</td>
<td>32</td>
</tr>
<tr>
<td>forced operation mode</td>
<td>32</td>
</tr>
<tr>
<td>forced operation on / off switch</td>
<td>8</td>
</tr>
<tr>
<td>four way valve</td>
<td>224</td>
</tr>
<tr>
<td>four way valve abnormality</td>
<td>115</td>
</tr>
<tr>
<td>four way valve coil</td>
<td>210</td>
</tr>
<tr>
<td>four way valve for dehumidification check</td>
<td>153</td>
</tr>
<tr>
<td>four way valve operation</td>
<td>38</td>
</tr>
<tr>
<td>four way valve performance check</td>
<td>152</td>
</tr>
<tr>
<td>freeze-up protection</td>
<td>43, 97</td>
</tr>
<tr>
<td>front grille (indoor)</td>
<td>166</td>
</tr>
<tr>
<td>front panel (indoor)</td>
<td>156</td>
</tr>
<tr>
<td>front panel (outdoor)</td>
<td>205</td>
</tr>
<tr>
<td>front panel open / close abnormality</td>
<td>104</td>
</tr>
<tr>
<td>fu1</td>
<td>8, 10</td>
</tr>
<tr>
<td>fu2</td>
<td>10</td>
</tr>
<tr>
<td>fu3</td>
<td>10</td>
</tr>
<tr>
<td>functions</td>
<td>2</td>
</tr>
<tr>
<td>fuse</td>
<td>8, 10</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>h0</td>
<td>120</td>
</tr>
<tr>
<td>h6</td>
<td>121</td>
</tr>
<tr>
<td>h8</td>
<td>123</td>
</tr>
</tbody>
</table>
Index

h9 ... 124
ha ... 8
hall ic ... 99
heat exchanger (indoor) 190
heating operation 74
high pressure control 97
high pressure control in cooling 118
horizontal blades 196
hot-start ... 36
humidifying airflow rate fine adjusting mode 32
humidifying hose length setting mode ... 32
humidity sensor abnormality 105
humidity sensor check 151
humidity sensor pcb 8, 105, 182

I
incompatible power supply 108
indoor heat exchanger freeze-up protection 43
indoor heat exchanger thermistor 103, 177
indoor unit demonstration 32
indoor unit pcb fault 96
indoor unit pcb output check 149
indoor unit quiet operation 23
information display 25, 82
input current control 41
input overcurrent detection 113
installation condition check 142
installation manual
 indoor units .. 54
 outdoor units 64
instruction ... 70
insufficient gas 132
interlocking shaft 197

J
j3 ... 124
j4 .. 233
j6 ... 124
ja ... 8, 233
jb ... 8, 233
jc ... 8, 233
jumper setting .. 233

L
l3 .. 126
l4 .. 128
l5 .. 130
led a .. 8, 10
led2 .. 8
led5 .. 10
lights-out of microcomputer status lamp 140
limit switch .. 202
liquid compression protection 2 45
low voltage protection 134

M
main circuit electrolytic capacitor check 143
main circuit short check 151
mold proof stick 26
monitor brightness setting 24
multi monitor ... 24
multi-colored indicator lamp 24

N
night set mode ... 31

O
ol activation .. 110
open/close mechanism 169
outdoor air thermistor 124
outdoor fan system check (dc motor) .. 142
outdoor heat exchanger thermistor 124, 221
outdoor unit pcb abnormality 109, 135
output overcurrent 130
over voltage protection 134
overcurrent .. 113
overload ... 110

P
p4 ... 124
partition plate ... 222
pcb, removal of 214
peak-cut control 42, 97
pi control ... 37
piping diagrams 236
position sensor abnormality 121
power failure recovery function 8, 233
power initialization control 48
power supply terminal board 180
power supply waveform check 143
power transistor 234
power transistor check 146
power-airflow dual flaps 21
powerful operation 23, 76
preheating operation 38
pressure equalization control 51
printed circuit board (pcb)
 control pcb (indoor) 8, 180
 control pcb (outdoor) 8, 10
 display pcb 8, 10
 humidity sensor pcb 8, 105, 182
 signal receiver / transmitter pcb 8
 signal receiver pcb 182
 streamer unit pcb 8, 202
 propeller fan 193, 205

Q
quick warming function 38

R
r2t .. 8
radiation fin .. 128, 215
radiation fin thermistor ... 124
reactor .. 211, 222
receiver pcb ... 182
reduction motor .. 171
refrigerant system check ... 144
reheating dehumidifying method 14
remote controller .. 71, 85
room temperature thermistor 103
rotating pulse input on outdoor unit pcb check 150

S
s1 ... 8, 176, 182
s20 ... 10, 210, 217
s21 ... 8, 182
s32 ... 8, 182
s401 ... 8
s402 ... 8
s403 ... 8
s41 ... 8, 176, 182
s43 ... 8, 175, 182
s45 ... 10, 217
s46 ... 8, 182
s48 ... 8, 182
s51 ... 8, 182
s52 ... 8, 175, 182
s56 ... 8
s57 ... 8
s58 ... 8
s63 ... 8
s70 ... 10, 210, 217
s80 ... 10, 210, 217
s90 ... 10, 211, 217
service check function .. 85
service cover .. 163
service monitor (led a) .. 203
set up .. 81
shelter .. 179
signal receiver / transmitter pcb 8
signal transmission error ... 106
signal transmission error on outdoor unit pcb 138
silicon grease .. 234
sound blanket .. 218
special modes .. 32
specifications ... 4
streamer unit ... 175, 199
streamer unit fault ... 101
streamer unit pcb ... 8, 202
sw1 ... 8
swing motor ... 176, 188

T
target discharge pipe temperature control 50
temperature rise in radiation fin 128
terminal cover .. 228
thermistor .. 124
thermistor discharge pipe thermistor 124
indoor heat exchanger thermistor 103, 177
outdoor heat exchanger thermistor 124
outdoor air thermistor ... 124
radiation fin thermistor .. 124
room temperature thermistor 103
thermistor assembly ... 211, 220
thermistor resistance check 141
thermostat system abnormality 103, 124
thermostat control ... 33
timer operation .. 79
24-hour on/off timer .. 30
combination of on timer and off timer 30
countdown off timer .. 30
titanium apatite photocatalytic air-purifying filter 160
trial operation ... 232
trial operation mode ... 32
troubleshooting .. 87
by led indication .. 86
by remote controller .. 85
with operation lamp ... 85

U
u0 ... 132
u2 ... 134
u4 ... 106, 135
u7 ... 138
u8 ... 108
upper panel ... 163

V
v1 ... 8
v2 ... 10
v3 ... 10
varistor ... 8, 10
vertical blades .. 196
v-shape temperature control 16

W
wide-angle louvers ... 21
wipe-clean flat panel ... 29
wiring diagrams .. 237
ISO 9001 is a plant certification system defined by the International Organization for Standardization (ISO) relating to quality assurance. ISO 9001 certification covers quality assurance aspects related to the “design, development, manufacture, installation, and supplementary service” of products manufactured at the plant.

ISO 14001 is the standard defined by the International Organization for Standardization (ISO) relating to environmental management systems. Our group has been acknowledged by an internationally accredited program of environmental protection procedures and activities to meet the requirements of ISO 14001.

Specifications, designs and other content appearing in this brochure are current as of October 2010 but subject to change without notice.

Daikin Industries, Ltd.’s products are manufactured for export to numerous countries throughout the world. Daikin Industries, Ltd. does not have control over which products are exported to and used in a particular country. Prior to purchase, please therefore confirm with your local authorized importer, distributor and/or retailer whether this product conforms to all applicable standards, and is suitable for use, in the region where the product will be used. This statement does not purport to exclude, restrict or modify the application of any local legislation.

Ask a qualified installer or contractor to install this product. Do not try to install the product yourself. Improper installation can result in water or refrigerant leakage, electrical shock, fire, or explosion.

Use only those parts and accessories supplied or specified by Daikin. Ask a qualified installer or contractor to install those parts and accessories. Use of unauthorized parts and accessories or improper installation of parts and accessories can result in water or refrigerant leakage, electrical shock, fire, or explosion.

Read the User’s Manual carefully before using this product. The User’s Manual provides important safety instructions and warnings. Be sure to follow these instructions and warnings.

If you have any inquiries, please contact your local importer, distributor, or retailer.